Factors influencing the electrospray intrasource separation and selective ionization of glycerophospholipids

  • Xianlin Han
  • Kui Yang
  • Jingyue Yang
  • Kora N. Fikes
  • Hua Cheng
  • Richard W. Gross
Articles

Abstract

The external electric field induces a separation of cations from negative electrolyte ions in the infusate while differential ionization of molecular species that possess differential electrical propensities can be induced in either the positive- or negative-ion mode during the electrospray ionization process. These physical and electrical processes that occur in the electrospray ion source have been used to selectively ionize lipid classes possessing different electrical propensities that are now known as “intrasource separation and selective ionization”. However, the chemical principles underlying charge-dependent alterations in ionization efficiencies responsible for the selective ionization of lipid classes are not known with certainty. Herein, we examined the multiple factors that contribute to intrasource separation and selective ionization of lipid classes under optimal instrumental conditions. We demonstrated that many different lipid classes could be selectively ionized in the ion source and that intrasource resolution of distinct molecular constituents was independent of lipid concentration, flow rate, and residual ions under most experimental conditions. Moreover, the presence of alkaline conditions facilitates the selective ionization of many lipid classes through a mechanism independent of the design of the ESI ion source. Collectively, this study provides an empirical foundation for understanding the chemical mechanisms underlying intrasource separation and selective ionization of lipid classes that can potentially be used for global analysis of cellular lipidomes without the need for chromatographic separation.

References

  1. 1.
    Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray Ionization for Mass Spectrometry of Large Biomolecules. Science 1989, 246, 64–71.CrossRefGoogle Scholar
  2. 2.
    Fenn, J. B. Electrospray Wings for Molecular Elephants (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 42 3871 20033894Google Scholar
  3. 3.
    Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray Ionization—Principles and Practice. Mass Spectrom. Rev. 1990, 9, 37–70.CrossRefGoogle Scholar
  4. 4.
    Smith, R. D.; Loo, J. A.; Edmonds, C. G.; Barinaga, C. J.; Udseth, H. R. New Developments in Biochemical Mass Spectrometry: Electrospray Ionization. Anal. Chem. 1990, 62, 882–899.CrossRefGoogle Scholar
  5. 5.
    Kebarle, P.; Tang, L. From Ions in Solution to Ions in the Gas Phase—The Mechanism of Electrospray Mass Spectrometry. Anal. Chem. 1993, 65, 972A-986A.Google Scholar
  6. 6.
    De la Mora, J. F.; Van Berkel, G. J.; Enke, C. G.; Col, R. B.; Martinez-Sanchez, M.; Fenn, J. B. Electrochemical Processes in Electrospray Ionization Mass Spectrometry. J. Mass Spectrom. 2000, 35, 939–952.CrossRefGoogle Scholar
  7. 7.
    Pozniak, B. P.; Cole, R. B. Negative Ion Mode Evolution of Potential Buildup and Mapping of Potential Gradients within the Electrospray Emitter. J. Am. Soc. Mass Spectrom. 2004, 15, 1737–1747.CrossRefGoogle Scholar
  8. 8.
    Rohner, T. C.; Lion, N.; Girault, H. H. Electrochemical and Theoretical Aspects of Electrospray Ionization. Phys. Chem., Chem. Phys. 2004, 6, 3056–3068.CrossRefGoogle Scholar
  9. 9.
    Tang, L.; Kebarle, P. Effect of the Conductivity of the Electrosprayed Solution on the Electrospray Current. Factors Determining Analyte Sensitivity in Electrospray Mass Spectrometry. Anal. Chem. 1991, 63, 2709–2715.CrossRefGoogle Scholar
  10. 10.
    Ikonomou, M. G.; Blades, A. T.; Kebarle, P. Electrospray-Ion Spray: A Comparison of Mechanisms and Performance. Anal. Chem. 1991, 63, 1989–1998.CrossRefGoogle Scholar
  11. 11.
    Gaskell, S. J. Electrospray: Principles and Practice. J. Mass Spectrom. 1997, 32, 677–688.CrossRefGoogle Scholar
  12. 12.
    Han, X.; Gross, R. W. Shotgun Lipidomics: Electrospray Ionization Mass Spectrometric Analysis and Quantitation of the Cellular Lipidomes Directly from Crude Extracts of Biological Samples. Mass Spectrom. Rev 2005, 24, 367–412.CrossRefGoogle Scholar
  13. 13.
    Han, X.; Gross, R. W. Electrospray Ionization Mass Spectroscopic Analysis of Human Erythrocyte Plasma Membrane Phospholipids. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 10635–10639.CrossRefGoogle Scholar
  14. 14.
    Han, X.; Gubitosi-Klug, R. A.; Collins, B. J.; Gross, R. W. Alterations in Individual Molecular Species of Human Platelet Phospholipids During Thrombin Stimulation: Electrospray Ionization Mass Spectrometry-Facilitated Identification of the Boundary Conditions for the Magnitude and Selectivity of Thrombin-Induced Platelet Phospholipid Hydrolysis. Biochemistry. 1996, 35, 5822–5832.CrossRefGoogle Scholar
  15. 15.
    Gross, R. W.; Sobel, B. E. Isocratic High-Performance Liquid Chromatography Separation of Phosphoglycerides and Lysophosphoglycerides. J. Chromatogr. 1980, 197, 79–85.CrossRefGoogle Scholar
  16. 16.
    Han, X.; Cheng, H. Characterization and Direct Quantitation of Cerebroside Molecular Species from Lipid Extracts by Shotgun Lipidomics. J. Lipid Res. 2005, 46, 163–175.CrossRefGoogle Scholar
  17. 17.
    Han, X.; Yang, K.; Cheng, H.; Fikes, K. N.; Gross, R. W. Shotgun Lipidomics of Phosphoethanolamine-Containing Lipids in Biological Samples After One-Step in Situ Derivatization. J. Lipid Res. 2005, 46, 1548–1560.CrossRefGoogle Scholar
  18. 18.
    Han, X.; Gross, R. W. Shotgun Lipidomics: Multi-Dimensional Mass Spectrometric Analysis of Cellular Lipidomes. Exp. Rev. Proteom. 2005, 2, 253–264.CrossRefGoogle Scholar
  19. 19.
    Gross, R. W. High Plasmalogen and Arachidonic Acid Content of Canine Myocardial Sarcolemma: A Fast Atom Bombardment Mass Spectroscopic and Gas Chromatography-Mass Spectroscopic Characterization. Biochemistry 1984, 23, 158–165.CrossRefGoogle Scholar
  20. 20.
    Bligh, E. G.; Dyer, W. J. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. 1959, 37, 911–917.CrossRefGoogle Scholar
  21. 21.
    Han, X.; Yang, J.; Cheng, H.; Ye, H.; Gross, R. W. Towards Fingerprinting Cellular Lipidomes Directly from Biological Samples by Two-Dimensional Electrospray Ionization Mass Spectrometry. Anal. Biochem. 2004, 330, 317–331.CrossRefGoogle Scholar
  22. 22.
    Han, X.; Cheng, H.; Mancuso, D. J.; Gross, R. W. Caloric Restriction Results in Phospholipid Depletion, Membrane Remodeling, and Triacylglycerol Accumulation in Murine Myocardium. Biochemistry 2004, 43, 15584–15594.CrossRefGoogle Scholar
  23. 23.
    Han, X.; Gross, R. W. Structural Determination of Picomole Amounts of Phospholipids Via Electrospray Ionization Tandem Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1995, 6, 1202–1210.CrossRefGoogle Scholar
  24. 24.
    Cullis, P. R.; Fenske, D. B.; Hope, M. J. Physical Properties and Functional Roles of Lipids in Membranes. In Biochemistry of Lipids, Lipoproteins, and Membranes; Vance, D. E.; Vance, J., Eds.; Elsevier: Amsterdam, 1996, pp 1–33.CrossRefGoogle Scholar
  25. 25.
    Koivusalo, M.; Haimi, P.; Heikinheimo, L.; Kostiainen, R.; Somerharju, P. Quantitative Determination of Phospholipid Compositions by ESI-MS: Effects of Acyl Chain Length, Unsaturation, and Lipid Concentration on Instrument Response. J. Lipid Res. 2001, 42, 663–672.Google Scholar
  26. 26.
    Hermansson, M.; Uphoff, A.; Kakela, R.; Somerharju, P. Automated Quantitative Analysis of Complex Lipidomes by Liquid Chromatography/Mass Spectrometry. Anal. Chem. 2005, 77, 2166–2175.CrossRefGoogle Scholar
  27. 27.
    DeLong, C. J.; Baker, P. R. S.; Samuel, M.; Cui, Z.; Thomas, M. J. Molecular Species Composition of Rat Liver Phospholipids by ESI-MS/MS: The Effect of Chromatography. J. Lipid Res. 2001, 42, 1959–1968.Google Scholar
  28. 28.
    Han, X.; Gross, R. W. Quantitative Analysis and Molecular Species Fingerprinting of Triacylglyceride Molecular Species Directly from Lipid Extracts of Biological Samples by Electrospray Ionization Tandem Mass Spectrometry. Anal. BioChem. 2001, 295, 88–100.CrossRefGoogle Scholar
  29. 29.
    Han, X. Characterization and Direct Quantitation of Ceramide Molecular Species from Lipid Extracts of Biological Samples by Electrospray Ionization Tandem Mass Spectrometry. Anal. BioChem. 2002, 302, 199–212.CrossRefGoogle Scholar
  30. 30.
    Cheng, H.; Xu, J.; McKeel, D. W., Jr.; Han, X. Specificity and Potential Mechanism of Sulfatide Deficiency in Alzheimer’s Disease: An Electrospray Ionization Mass Spectrometric Study. Cell. Mol. Biol. 2003, 49, 809–818.Google Scholar
  31. 31.
    Han, X.; Cheng, H.; Fryer, J. D.; Fagan, A. M.; Holtzman, D. M. Novel Role for Apolipoprotein E in the Central Nervous System: Modulation of Sulfatide Content. J. Biol. Chem. 2003, 278, 8043–8051.CrossRefGoogle Scholar
  32. 32.
    Kerwin, J. L.; Tuininga, A. R.; Ericsson, L. H. Identification of Molecular Species of Glycerophospholipids and Sphingomyelin Using Electrospray Mass Spectrometry. J. Lipid Res 1994, 35, 1102–1114.Google Scholar
  33. 33.
    Kim, H. Y.; Wang, T. C.; Ma, Y. C. Liquid Chromatography/Mass Spectrometry of Phospholipids Using Electrospray Ionization. Anal. Chem. 1994, 66, 3977–3982.CrossRefGoogle Scholar
  34. 34.
    Ramanadham, S.; Hsu, F. F.; Bohrer, A.; Nowatzke, W.; Ma, Z.; Turk, J. Electrospray Ionization Mass Spectrometric Analyses of Phospholipids from Rat and Human Pancreatic Islets and Subcellular Membranes: Comparison to Other Tissues and Implications for Membrane Fusion in Insulin Exocytosis. Biochemistry 1998, 37, 4553–4567.CrossRefGoogle Scholar
  35. 35.
    Taguchi, R.; Hayakawa, J.; Takeuchi, Y.; Ishida, M. Two-Dimensional Analysis of Phospholipids by Capillary Liquid Chromatography/Electrospray Ionization Mass Spectrometry. J. Mass Spectrom. 2000, 35, 953–966.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2006

Authors and Affiliations

  • Xianlin Han
    • 1
    • 2
  • Kui Yang
    • 1
  • Jingyue Yang
    • 1
  • Kora N. Fikes
    • 1
  • Hua Cheng
    • 1
  • Richard W. Gross
    • 1
    • 3
    • 4
  1. 1.Division of Bioorganic Chemistry and Molecular PharmacologyWashington University School of MedicineSt. LouisUSA
  2. 2.Department of MedicineWashington University School of MedicineSt. Louis
  3. 3.Department of Molecular Biology and PharmacologyWashington University School of MedicineSt. Louis
  4. 4.Department of ChemistryWashington UniversitySt. Louis

Personalised recommendations