Co-occurrence of boundary and resonance ejection in a multiplexed rectilinear ion trap mass spectrometer

  • Amy M. Tabert
  • Michael P. Goodwin
  • R. Graham Cooks
Short Communication

Abstract

A method is reported for evaluating ion trap mass analyzers by selection of operating conditions under which both boundary and resonance ejection peaks occur in a single mass scan. The choice of frequency and amplitude of the auxiliary waveform applied for resonance ejection can be such as to produce a resonance ejection mass spectrum with unit resolution or, under selected conditions, signals attributable to both boundary and resonance ejection in a single mass scan. The contrasting mass resolution associated with these two ejection processes is evident in these data. The co-occurrence of the two ejection phenomena is ascribed to the effects of higher-order fields; it is more marked in some rectilinear ion traps (RITs) than in other nominally identical devices, leading to the possibility of using it to compare individual mass analyzers in multiplexed instruments. The method is used to compare multiple ion traps driven by the same RF signal in a fully-multiplexed mass spectrometer, composed of parallel ion source/mass analyzer/detector channels each housed in one quadrant of a specialized vacuum chamber.

References

  1. 1.
    Syka, J. E. P. Commercialization of the Quadrupole Ion Trap. In Practical Aspects of Ion Trap Mass Spectrometry, Vol. I March, R. E., Todd, J. F. J., Eds. CRC Press: Boca Raton, FL, 1995, pp 169–205.Google Scholar
  2. 2.
    Gillz, L. A.; Amy, J. W.; Vaughn, W. E.; Cooks, R. G. In Situ Optimization of the Electrode Geometry of the Quadrupole Ion Trap. Int. J. Mass Spectrom 1999, 188(1/2), 87–93.CrossRefGoogle Scholar
  3. 3.
    Li, H. Y.; Plass, W. R.; Patterson, G. E.; Cooks, R. G. Chemical Mass Shifts in Resonance Ejection Experiments in the Quadrupole Ion Trap. J. Mass Spectrom 2002, 37(10), 1051–1058.CrossRefGoogle Scholar
  4. 4.
    Plass, W. R.; Li, H.; Cooks, R. G. Theory, Simulation, and Measurement of Chemical Mass Shifts in RF Quadrupole Ion Traps. Int. J. Mass Spectrom 2003, 228(2/3), 237–267.CrossRefGoogle Scholar
  5. 5.
    Franzen, J.; Gabling, R. H.; Schubert, M.; Wang, Y. Nonlinear Ion Traps. In Practical Aspects of Ion Trap Mass Spectrometry Vol. I; March, R. E., Todd, J. F. J., Eds. CRC Press: Boca Raton, FL, 1995; pp 49–167.Google Scholar
  6. 6.
    Wells, J. M.; Badman, E. R.; Cooks, R. G. A Quadrupole Ion Trap of Cylindrical Geometry Operated in the Mass Selective Instability Mode. Anal. Chem 1998, 70(3), 438–444.CrossRefGoogle Scholar
  7. 7.
    Tabert, A. M.; Griep-Raming, J.; Guymon, A. J.; Cooks, R. G. High-Throughput Miniature Cylindrical Ion Trap Array Mass Spectrometer. Anal. Chem. 2003, 75(21), 5656–5664.CrossRefGoogle Scholar
  8. 8.
    Laughlin, B. C.; Mulligan, C. C.; Cooks, R. G. Atmospheric Pressure Ionization in a Miniature Mass Spectrometer. Anal. Chem. 2005, 77(9), 2928–2939.CrossRefGoogle Scholar
  9. 9.
    Danell, R. M.; Ray, K. L.; Glish, G. L. Development of an Electrically Tunable, Compensated, Open Cylindrical Ion Trap Mass Spectrometer. Abstracts Am. Chem. Soc. 2001, 221, 49,-ANYL.Google Scholar
  10. 10.
    Moxom, J.; Reilly, P. T. A.; Whitten, W. B.; Ramsey, J. M. Double Resonance Ejection in a Micro Ion Trap Mass Spectrometer. Rapid Commun. Mass Spectrom. 2002, 16(8), 755–760.CrossRefGoogle Scholar
  11. 11.
    Badman, E. R.; Johnson, R. C.; Plass, W. R.; Cooks, R. G. A Miniature Cylindrical Quadrupole Ion Trap: Simulation and Experiment. Anal. Chem. 1998, 70, 4896–4901.CrossRefGoogle Scholar
  12. 12.
    Wu, G. X.; Cooks, R. G.; Ouyang, Z. Geometry Optimization for the Cylindrical Ion Trap: Field Calculations, Simulations, and Experiments. Int. J. Mass Spectrom. 2005, 241(2/3), 119–132.CrossRefGoogle Scholar
  13. 13.
    Ouyang, Z.; Wu, G. X.; Song, Y. S.; Li, H. Y.; Plass, W. R.; Cooks, R. G. Rectilinear Ion Trap: Concepts, Calculations, and Analytical Performance of a New Mass Analyzer. Anal. Chem. 2004, 76(16), 4595–4605.CrossRefGoogle Scholar
  14. 14.
    Erickson,B. E. Miniaturized Rectilinear Ion Trap. Anal. Chem. 2004, 76(17), 305A.Google Scholar
  15. 15.
    Tabert, A. M. Ph.D Thesis, Purdue University, West Lafayette, IN, 2005.Google Scholar
  16. 16.
    Cooks, R. G.; Rockwood, A. L. The Thomson—A Suggested Unit for Mass Spectroscopists. Rapid Commun. Mass Spectrom. 1991, 5(2), 93.Google Scholar
  17. 17.
    March, R. E.; Todd, J. F. J. Practical Aspects of Ion Trap Mass Spectrometry Vol. I: Fundamentals of Ion Trap Mass Spectrometry. CRC Press: Boca Raton, FL, 1995; pp 279–283.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2005

Authors and Affiliations

  • Amy M. Tabert
    • 1
  • Michael P. Goodwin
    • 1
  • R. Graham Cooks
    • 1
  1. 1.Department of ChemistryPurdue UniversityWest LafayetteUSA

Personalised recommendations