Advertisement

Differentiation of aspartic and isoaspartic acids using electron transfer dissociation

  • Peter B. O’ConnorEmail author
  • Jason J. Cournoyer
  • Sharon J. Pitteri
  • Paul A. Chrisman
  • Scott A. McLuckey
Short Communication

Abstract

Electron-transfer dissociation allows differentiation of isoaspartic acid and aspartic acid residues using the same c + 57 and z − 57 peaks that were previously observed with electron capture dissociation. These peaks clearly define both the presence and the position of isoaspartic acid residues and they are relatively abundant. The lower resolution of the ion trap instrument makes detection of the aspartic acid residue’s diagnostic peak difficult because of interference with side-chain fragment ions from arginine residues, but the aspartic acid residues are still clearly observed in the backbone cleavages and can be inferred from the absence of the isoaspartic acid diagnostic ions.

References

  1. 1.
    Robinson, N. E.; Robinson, A. B. Molecular Clocks: Deamidation of Asparaginyl and Glutaminyl Residues in Peptides and Proteins; Althouse Press: Cave Junction, OR, 2004.Google Scholar
  2. 2.
    Radkiewics, J. L.; Zipse, H.; Clarke, S.; Houk, K. N. Accelerated racemization of aspartic acid and asparigine residues via succinimide intermediates: An ab initio theoretical exploration of mechanism. J. Am. Chem. Soc. 1996, 118, 9148–9155.CrossRefGoogle Scholar
  3. 3.
    Geiger, T.; Clarke, S. Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. J. Biol. Chem. 1987, 262, 785–794.Google Scholar
  4. 4.
    Kim, E.; Lowenson, J. D.; MacLaren, D. C.; Clarke, S.; Young, S. G. The primary structure of a protein carboxyl methyltransferase from bovine brain that selectively methylates l-isoaspartyl sites. J. Biol. Chem. 1997, 94, 6132–6137.Google Scholar
  5. 5.
    Henzel, W. J.; Stults, J. T.; Hsu, C. A.; Aswad, D. W. Deficiency of a protein-repair enzyme results in the accumulation of altered proteins, retardation of growth, and fatal seizures in mice. Proc. Natl. Acad. Sci. U.S.A. 1989, 264, 15905–15911.Google Scholar
  6. 6.
    MacFarlane, D. Inhibitors of cyclic nucleotide phosphodiesterases inhibit protein carboxyl methylation in intact blood platelets. J. Biol. Chem. 1984, 259, 1357–1362.Google Scholar
  7. 7.
    Johnson, B. A.; Aswad, D. W. Enzymatic protein carboxyl methylation at physiological ph: Cyclic imide formation explains rapid methyl turnover. Biochemistry 1985, 24, 2581–2586.CrossRefGoogle Scholar
  8. 8.
    Gonzalez, L. J.; Shimizu, T.; Satomi, Y.; Betancourt, L.; Besada, V.; Padron, G.; Orlando, R.; Shirasawa, T.; Shimonishi, Y.; Takao, T. Characterization of aspartic acid and beta-aspartic acid in peptides by fast-atom bombardment mass spectrometry and tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2000, 14, 2092–2102.CrossRefGoogle Scholar
  9. 9.
    Castet, S.; Enjalbal, C.; Fulcrand, P.; Guichou, J. F.; Martinez, J.; Aubagnac, J. L. Differentiating alpha- and beta-aspartic acids by electrospray ionization and low-energy tandem mass spectrometry. Rapid Commun. Mass Spectrom. 1996, 10, 1934–1938.CrossRefGoogle Scholar
  10. 10.
    Zubarev, R. A.; Kelleher, N. L.; McLafferty, F. W. Electron capture dissociation of multiply charged protein cations—a nonergodic process. J. Am. Chem. Soc. 1998, 120, 3265–3266.CrossRefGoogle Scholar
  11. 11.
    Cournoyer, J. J.; Pittman, J. L.; Ivleva, V. B.; Fallows, E.; Waskell, L.; Costello, C. E.; O’Connor, P. B. Deamidation: Differentiation of aspartyl from isoaspartyl products in peptides by electron capture dissociation. Protein Sci. 2005, 14, 452–463.CrossRefGoogle Scholar
  12. 12.
    Coon, J. J.; Syka, J. E. P.; Schwartz, J. C.; Shabanowitz, J.; Hunt, D. F. Anion dependence in the partitioning between proton and electron transfer in ion/ion reactions. Int. J. Mass Spectrom. 2004, 236, 33–42.CrossRefGoogle Scholar
  13. 13.
    Syka, J. E. P.; Coon, J. J.; Schroeder, M. J.; Shabanowitz, J.; Hunt, D. F. Peptide and protein sequence analysis by electron transfer dissociation mass spectometry. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 9528–9533.CrossRefGoogle Scholar
  14. 14.
    Wilm, M.; Shevchenko, A.; Houthaeve, T.; Breit, S.; Schweigerer, L.; Fotsis, T.; Mann, M. Attomole protein characterization by capillary electrophoresis mass spectometry. Science 1996, 379, 466–469.Google Scholar
  15. 15.
    Valaskovic, G. A.; Kelleher, N. L.; McLafferty, F. W. Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectometry. Nature. 1996, 273, 1199–1202.Google Scholar
  16. 16.
    Kelleher, N. L.; Senko, M. W.; Siegel, M. M.; McLafferty, F. W. Unit resolution mass spectra of 112 kDa molecules with 3 Da accuracy. J. Am. Soc. Mass Spectrom. 1997, 8, 380–383.CrossRefGoogle Scholar
  17. 17.
    Van Berkel, G. J.; Asano, K. G.; Schnier, P. D. Electrochemical processes in a wire-in-a-capillary bulk-loaded, nano-electrospray emitter. J. Am. Soc. Mass Spectrom. 2001, 12, 853–862.CrossRefGoogle Scholar
  18. 18.
    Reid, G. E.; Wells, J. M.; Badman, E. R.; McLuckey, S. A. Performance of a quadrupole ion trap mass spectrometer adapted for ion/ion reaction studies. Int. J. Mass Spectrom. 2003, 222, 243–258.CrossRefGoogle Scholar
  19. 19.
    McLuckey, S. A.; Glish, G. L.; Asano, K. G.; Grant, B. C. Atmospheric sampling glow discharge ionization source for the determination of trace organic compounds in ambient air. Anal. Chem. 1988, 60, 2220–2227.CrossRefGoogle Scholar
  20. 20.
    Hogan, J. M.; Pitteri, S. J.; Chrisman, P. A.; McLuckey, S. A. Complementary structural information from a tryptic n-linked glycopeptide via electron transfer ion/ion reactions and collision-induced dissociation. J. Proteome Res. 2005, 4, 628–632.CrossRefGoogle Scholar
  21. 21.
    Goeringer, D. E.; Asano, K. G.; McLuckey, S. A.; Hoekman, D.; Stiller, S. E. Filtered noise field signals for mass-selective accumulation of externally formed ions in a quadrupole ion trap. Anal. Chem. 1994, 66, 313–318.CrossRefGoogle Scholar
  22. 22.
    Kelley, P. E. Mass Spectrometry Method Using Notch Filter, 1992.Google Scholar
  23. 23.
    Cooper, H. J.; Hudgins, R. R.; Hakansson, K.; Marshall, A. G. Characterization of amino acid side chain losses in electron capture dissociation. J. Am. Soc. Mass Spectrom. 2002, 13, 241–249.CrossRefGoogle Scholar
  24. 24.
    Pitteri, S. J.; Chrisman, P. A.; Hogan, J. M.; McLuckey, S. A. Electron transfer ion/ion reactions in a three-dimensional quadrupole ion trap: Reactions of doubly and triply protonated peptides with so_2. Anal. Chem. 2005, 77, 1831–1839.CrossRefGoogle Scholar
  25. 25.
    Heeren, R. M. A.; Kleinnijenhuis, A. J.; Taban, I. M.; Mihalca, R.; Geels, R.; Duursma, M. C.; Heck, A. J. R.; McDonnell, L. A. Does double electron capture lead to the formation of biradicals? An ECD-SORI-CID study on lacticin 481. Presented at the 53rd American Society for Mass Spectrometry Conference, San Antonio, TX, 2005.Google Scholar
  26. 26.
    Leymarie, N.; Costello, C. E.; O’Connor, P. B. Electron capture dissociation initiates a free radical reaction cascade. J. Am. Chem. Soc. 2003, 125, 8949–8958.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2005

Authors and Affiliations

  • Peter B. O’Connor
    • 1
    Email author
  • Jason J. Cournoyer
    • 1
  • Sharon J. Pitteri
    • 2
  • Paul A. Chrisman
    • 2
  • Scott A. McLuckey
    • 2
  1. 1.Mass Spectrometry Resource, Department of BiochemistryBoston University School of MedicineBostonUSA
  2. 2.Department of ChemistryPurdue UniversityWest LafayetteUSA

Personalised recommendations