Advertisement

In situ structural characterization of phosphatidylcholines in brain tissue using MALDI-MS/MS

  • Shelley N. Jackson
  • Hay-Yan J. Wang
  • Amina S. Woods
Article

Abstract

Phosphatidylcholine (PC) is one of the most abundant classes of phospholipids and is a major component of membranes in biological systems. Recently, PCs have been detected by direct tissue analysis using MALDI-TOFMS. However, these studies did not allow for the structural characterization of PCs in tissue. In the current study, an in situ method for detection and structural analysis of PC species in brain tissue was developed using a MALDI-TOF/TOF mass spectrometer. Initial profiling of lipids in tissue is performed by MALDI-TOFMS, which allows for the assignment of PC species. However, to confirm the structure of the PC species detected in tissue, MALDI-MS/MS analysis was employed. In this work, protonated, sodiated, and potassiated PC species were detected in brain tissue using DHA matrix. MALDI-MS/MS analysis of these species yielded fragments that verified a phosphocholine head group, but did not supply any fragments that would permit the identification of acyl substituents. To obtain more structural information, lithium adducts of PC species were produced using DHA matrix dissolved in 100 mM lithium chloride. MALDI-MS/MS analysis of lithiated PC species produced fragments that allowed for the identification and positional assignment of acyl groups in PC species.

Keywords

Neutral Loss Mass Peak Trimethylamine Lithium Salt Fragment Peak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hanahan, D. J. A Guide to Phospholipid Chemistry; Oxford University Press: New York, 1997; pp 65–74Google Scholar
  2. 2.
    Wright, M. M.; Howe, A. G.; Zaremberg, V. Cell Membranes and Apoptosis: Role of Cardiolipin, Phosphatidylcholine, and Anticancer Lipid Analogs. Biochem. Cell Biol. 2004, 82, 18–26.CrossRefGoogle Scholar
  3. 3.
    Martelli, A. M.; Fala, F.; Faenza, I.; Billi, A. M.; Cappellini, A.; Manzoli, L.; Cocco, L. Metabolism and Signaling Activities of Nuclear Lipids. Cell. Mol. Life Sci. 2004, 61, 1143–1156.CrossRefGoogle Scholar
  4. 4.
    Cui, Z.; Houweling, M. Phosphatidylcholine and Cell Death. Biochim. Biophys. Acta 2002, 87, 1585–1596.Google Scholar
  5. 5.
    Harvey, D. J. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry of Phospholipids. J. Mass Spectrom. 1995, 30, 1333–1346.CrossRefGoogle Scholar
  6. 6.
    Marto, J. A.; White, F. M.; Seldomridge, S.; Marshall, A. G. Structural Characterization of Phospholipids by Matrix-Assisted Laser Desorption/Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal. Chem. 1995, 67, 3979–3984.CrossRefGoogle Scholar
  7. 7.
    Al-Saad, K. A.; Siems, W. F.; Hill, H. H.; Zabrouskov, V.; Knowles, N. R. Structural Analysis of Phosphatidylcholines by Post-Source Decay Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2003, 14, 373–382.CrossRefGoogle Scholar
  8. 8.
    Schiller, J.; Sub, R.; Arnhold, J.; Fuchs, B.; LeBig, J.; Muller, M.; Petkovic, M.; Spalteholz, H.; Zschornig, O.; Arnold, K. Matrix-Assisted Laser Desorption and Ionization Time-of-Flight (MALDI-TOF) Mass Spectrometry in Lipid and Phospholipid Research. Prog. Lipid Res. 2004, 43, 449–488.CrossRefGoogle Scholar
  9. 9.
    Schwartz, S. A.; Reyzer, M. L.; Caprioli, R. M. Direct Tissue Analysis Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry: Practical Aspects of Sample Preparation. J. Mass Spectrom. 2003, 38, 699–708.CrossRefGoogle Scholar
  10. 10.
    Chaurand, P.; Caprioli, R. M. Direct Profiling and Imaging of Peptides and Proteins from Mammalian Cells and Tissue Sections by Mass Spectrometry. Electrophoresis 2002, 23, 3125–3135.CrossRefGoogle Scholar
  11. 11.
    Todd, P. J.; Schaaff, T. G.; Chaurand, P.; Caprioli, R. M. Organic Ion Imaging of Biological Tissue with Secondary Ion Mass Spectrometry and Matrix-Assisted Laser Desorption/Ionization. J. Mass Spectrom. 2001, 36, 355–369.CrossRefGoogle Scholar
  12. 12.
    Rujoi, M.; Estrada, R.; Yappert, M. C. In Situ MALDI-TOF MS Regional Analysis of Neutral Phospholipids in Lens Tissue. Anal. Chem. 2004, 76, 1657–1663.CrossRefGoogle Scholar
  13. 13.
    Jackson, S. N.; Wang, H.-Y. J.; Woods, A. S.; Ugarov, M.; Egan, T.; Schultz, J. A. Direct Tissue Analysis of Phospholipids in Rat Brain Using MALDI-TOFMS and MALDI-Ion Mobility-TOFMS. J. Am. Soc. Mass Spectrom. 2005, 16, 133–138.CrossRefGoogle Scholar
  14. 14.
    Jackson, S. N.; Wang, H.-Y. J.; Woods, A. S. Direct Profiling of Lipid Distribution in Brain Tisuue Using MALDI-TOFMS. Anal. Chem. 2005, 77, 4523–4527.CrossRefGoogle Scholar
  15. 15.
    Yergey, A. L.; Coorssen, J. R.; Backlund, P. S., Jr.; Blank, P. S.; Humphrey, G. A.; Zimmerberg, J.; Campbell, J. M.; Vestal, M. L. De Novo Sequencing of Peptides Using MALDI/TOF-TOF. J. Am. Soc. Mass Spectrom. 2002, 13, 784–791.CrossRefGoogle Scholar
  16. 16.
    Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates, 3rd ed.; Academic Press: San Diego, 1997.Google Scholar
  17. 17.
    Hsu, F.-F.; Bohrer, A.; Turk, J. Formation of Lithiated Adducts of Glycerophosphocholine Lipids Facilitates Their Identification by Electrospray Ionization Tandem Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1998, 9, 516–526.CrossRefGoogle Scholar
  18. 18.
    Hsu, F.-F.; Turk, J. Electrospray Ionization/Tandem Quadrupole Mass Spectrometric Studies on Phosphatidylcholines: The Fragmentation Processes. J. Am. Soc. Mass Spectrom. 2003, 14, 352–363.CrossRefGoogle Scholar
  19. 19.
    Pulfer, M.; Murphy, R. C. Electrospray Mass Spectrometry of Phospholipids. Mass Spectrom. Rev. 2003, 22, 332–364.CrossRefGoogle Scholar
  20. 20.
    Han, X.; Gross, R. W. Structural Determination of Picomole Amounts of Phospholipids via Electrospray Ionization Tandem Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1995, 6, 1202–1210.CrossRefGoogle Scholar
  21. 21.
    Domingues, P.; Domingues, M. R. M.; Amado, F. M. L.; Ferrer-Correia, A. J. Characterization of Sodiated Glycerol Phosphatidylcholine Phospholipids by Mass Spectrometry. Rapid Commun. Mass Spectrom. 2001, 15, 799–804.CrossRefGoogle Scholar
  22. 22.
    Agranoff, B. W.; Benjamins, J. A.; Hajra, A. K. Basic Neurochemistry Molecular, Cellular, and Medical Aspects, 6th ed; Siegel, G. J.; Agranoff, B. W.; Albers, R. W.; Fisher, S. K.; Uhler, M. D.; Eds. Lippincott Williams and Wilkins: Philadelphia, 1999, pp. 47–67.Google Scholar
  23. 23.
    Ma, Y.-C.; Kim, H.-Y. Development of the On-Line High-Performance Liquid Chromatography/Thermospray Mass Spectrometry Method for the Analysis of Phospholipid Molecular Species in Rat Brain. Anal. Biochem. 1995, 226, 293–301.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2005

Authors and Affiliations

  • Shelley N. Jackson
    • 1
  • Hay-Yan J. Wang
    • 1
  • Amina S. Woods
    • 1
  1. 1.National Institute on Drug Abuse Intramural Research ProgramNational Institutes of HealthBaltimoreUSA

Personalised recommendations