Hydrogen/chlorine exchange reactions of gaseous carbanions

  • Hao Chen
  • R. Graham Cooks
  • Eduardo C. Meurer
  • Marcos N. Eberlin
Article

Abstract

Gas-phase reactions of three typical carbanions CH2NO 2 , CH2CN, and CH2S(O)CH 3 with the chloromethanes CH2Cl2, CHCl3, and CCl4, examined by tandem mass spectrometry, show a novel hydrogen/chlorine exchange reaction. For example, reaction between the nitromethyl anion CH2NO 2 and carbon tetrachloride CCl4 forms the ion CHClNO 2 . The suggested reaction mechanism involves nucleophilic attack by CH2NO 2 at the chlorine of CCl4 followed by proton transfer within the resulting complex [CH2ClNO2 + CCl 3 ] to form CHClNO 2 and CHCl3. Two other carbanions CH2CN and CH2S(O)CH 3 also undergo the novel hydrogen/chlorine exchange reactions with CCl4 but to a much smaller extent, their higher nucleophilicities favoring competitive nucleophilic attack reactions. Proton abstraction is the exclusive pathway in the reactions of these carbanions with CHCl3. While CH2CN and CH2S(O)CH 3 promote mainly proton abstraction and nucleophilic displacement in reactions with CH2Cl2, CH2NO 2 does not react.

References

  1. 1.
    Palomo, C.; Oiarbide, M.; Mielgo, A. Unveiling Reliable Catalysts for the Asymmetric Nitroaldol (Henry) Reaction. Angew. Chem. Int. Ed. 2004, 43, 5442–5444.CrossRefGoogle Scholar
  2. 2.
    Corey, E. J.; Chaykovsky, M. J. Methylsulfinylcarbanion. J. Am. Chem. Soc. 1962, 84, 866–867.CrossRefGoogle Scholar
  3. 3.
    Buncel, E.; Park, K.-T.; Dust, J. M.; Manderville, R. A. Concerning the Denticity of the Dimethylsulfinyl Anion in Meisenheimer Complexation. J. Am. Chem. Soc. 2003, 125, 5388–5392.CrossRefGoogle Scholar
  4. 4.
    Stewart, J. H.; Shapiro, R. H.; Depuy, C. H.; Bierbaum, V. M. Hydrogen—Deuterium Exchange Reactions of Carbanions with Water-d2 in the Gas Phase. J. Am. Chem. Soc. 1977, 99, 7650–7653.CrossRefGoogle Scholar
  5. 5.
    Bartmess, J. E.; Hays, R. J.; Caldwell, G. The Addition of Carbanions to the Carbonyl Group in the Gas Phase. J. Am. Chem. Soc. 1982, 103, 1338–1344.CrossRefGoogle Scholar
  6. 6.
    Grabowski, J. J.; Zhang, L. Dimethyl Disulfide: Anion—Molecule Reactions in the Gas Phase at 300 K. J. Am. Chem. Soc. 1989, 111, 1193–1203.CrossRefGoogle Scholar
  7. 7.
    Rinden, E.; Maricq, M. M.; Grabowski, J. J. Gas-Phase Ion—Molecule Reactions of the Nitric Oxide Anion. J. Am. Chem. Soc. 1989, 111, 1203–1210.CrossRefGoogle Scholar
  8. 8.
    Knighton, W. B.; Grimsrud, E. P. Gas-Phase Electron-Transfer Reactions Between Selected Molecular Anions and Halogenated Methanes. J. Am. Chem. Soc. 1992, 114, 2336–2342.CrossRefGoogle Scholar
  9. 9.
    Staneke, P. O.; Groothuis, G.; Ingemann, S.; Nibbering, N. M. M. Competing Electron Transfer, Proton Abstraction, and Nucleophilic Substitutions in Gas-Phase Reactions of (Radical) Anions with Chloro- and Bromomethanes. J. Phys. Org. Chem. 1996, 9, 471–486.CrossRefGoogle Scholar
  10. 10.
    Staneke, P. O.; Kauw, J.; Born, M.; Ingemann, S.; Nibbering, N. M. M. Low Pressure Gas-Phase Reactions of the Atomic Oxygen Radical Anion with Halomethanes Studied Using Fourier Transform Ion Cyclotron Resonance. Rapid Commun. Mass Spectrom. 1997, 11, 124–132.CrossRefGoogle Scholar
  11. 11.
    Zefirov, N. S.; Marhon’kov, D. I. X-Philic Reactions. Chem. Rev. 1982, 82, 615–624.CrossRefGoogle Scholar
  12. 12.
    Slagle, J. D.; Huang, T. T.-S.; Franzus, B. Mechanism of Triphenylphosphine-Tetrachloromethane-Alcohol Reaction: Pericyclic or Clustered Ion Pairs?. J. Org. Chem. 1981, 46, 3526–3530.CrossRefGoogle Scholar
  13. 13.
    Bartlett, P. D.; Condon, F. E.; Schneid, A. Exchanges of Halogen and Hydrogen Between Organic Halides and Isoparaffins in the Presence of Aluminum Halides. J. Am. Chem. Soc. 1944, 66, 1531–1539.CrossRefGoogle Scholar
  14. 14.
    Schmerling, L. The Exchange of Hydrogen and Chlorine Between Biocyclo(2,2,1)Heptane and t-Butyl Chloride. J. Am. Chem. Soc. 1946, 68, 195–196.CrossRefGoogle Scholar
  15. 15.
    Zakharkin, L. I.; Okhlobystin, O. Y.; Semin, G. K.; Babushkina, T. A. Exchange of Hydrogen for Chlorine in the Carborane-Carbon Tetrachloride or Chloroform System under the Action of Aluminum Chloride. Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya 1965, 10, 1913–1914.Google Scholar
  16. 16.
    Kerrigan, J. V. The Interaction of Boron Trichloride with Diborane. Inorg. Chem. 1964, 3, 908–910.CrossRefGoogle Scholar
  17. 17.
    Kondo, M. ; Nishi, I. ; Okamoto, K. ; Kato, T. ; Izumiya, N. Studies on Detection of Intramolecular Hydrogen Bonds by Hydrogen—Chlorine Exchange Method. Peptides, Synthesis, Structure, Function. Proceedings of the 7th American Peptide Symposium; Madison, Wisconsin, 1981; pp 291–294.Google Scholar
  18. 18.
    Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 2003; Gaussian Inc.: Wallingford, CT.Google Scholar
  19. 19.
    Scott, A. P.; Radom, L. Harmonic Vibrational Frequencies: An Evaluation of Hartree-Fock, Moller-Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors. J. Phys. Chem. 1996, 100, 16502–16513.CrossRefGoogle Scholar
  20. 20.
    Faustov, V. I.; Baskir, E. G.; Biryukov, A. A. Thermal Isomerization of Acetylnitrene: A Quantum-Chemical Study. Rus. Chem. Bull. Int. Ed. 2003, 52, 2328–2333.CrossRefGoogle Scholar
  21. 21.
    Paul, D. F.; Haberfield, P. Chlorination of Anilines. Bimolecular Acid-Catalyzed Rearrangement of N-Chloroanilines. J. Org. Chem. 1976, 41, 3170–3175.CrossRefGoogle Scholar
  22. 22.
    Depuy, C. H. An Introduction to the Gas Phase Chemistry of Anions. Int. J. Mass Spectrom. 2000, 200, 79–96.CrossRefGoogle Scholar
  23. 23.
    Morel, G.; Seux, R.; Foucaud, A. Halogenation of Various α-Carbonyl Carbanions by Carbon Tetrachloride. Bull. Soc. Chim. France 1975, 7/8, 1865–1870.Google Scholar
  24. 24.
    Staneke, P. O.; Groothuis, G.; Ingemann, S.; Nibbering, N. M. M. The Interplay Between Electron Transfer and Attack on Halogen in Gas-Phase Reactions of Negative Ions with Fluoro-Chloromethanes and Fluoro-Bromomethanes. Int. J. Mass Spectrom. 1995, 149/150, 99–110.CrossRefGoogle Scholar
  25. 25.
    Staneke, P. O.; Groothuis, G.; Ingemann, S.; Nibbering, N. M. M. Competing Electron Transfer, Proton Abstraction, and Nucleophilic Substitutions in Gas-Phase Reactions of (Radical) Anions with Chloro- and Bromomethanes. J. Phys. Org. Chem. 1996, 9, 471–486.CrossRefGoogle Scholar
  26. 26.
    Moran, S.; Ellis, H. B.; Defrees, D. J.; Mclean, A. D.; Ellison, G. B. Carbanion Spectroscopy: CH2CN. J. Am. Chem. Soc. 1987, 109, 5996–6003.CrossRefGoogle Scholar
  27. 27.
    Dispert, H.; Lacmann, K. Negative Ion Formation in Collisions Between Potassium and Fluoro- and Chloromethanes: Electron Affinities and Bond Dissociation Energies. Int. J. Mass Spectrom. Ion Phys. 1978, 28, 49–67.CrossRefGoogle Scholar
  28. 28.
    Buncel, E.; Dust, J. M. Carbanion Chemistry: Structures and Mechanisms; Oxford University Press and American Chemical Society: Washington DC and New York, 2003; p 41.Google Scholar
  29. 29.
    Jonczyk, A.; Kwast, A.; Makosza, M. Reactions of Organic Anions. 89. Reactions of Carbon Tetrachloride with Carbon Acids in Catalytic Two-Phase System. J. Org. Chem. 1979, 44, 1192–1194.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2005

Authors and Affiliations

  • Hao Chen
    • 1
  • R. Graham Cooks
    • 1
  • Eduardo C. Meurer
    • 2
  • Marcos N. Eberlin
    • 2
  1. 1.Department of ChemistryPurdue UniversityWest LafayetteUSA
  2. 2.Institute of ChemistryState University of Campinas, UNICAMPCampinas SPBrazil

Personalised recommendations