Journal of the American Society for Mass Spectrometry

, Volume 16, Issue 12, pp 1985–1999

Characterization of a new qQq-FTICR mass spectrometer for post-translational modification analysis and top-down tandem mass spectrometry of whole proteins

  • Judith A. Jebanathirajah
  • Jason L. Pittman
  • Bruce A. Thomson
  • Bogdan A. Budnik
  • Parminder Kaur
  • Michael Rape
  • Marc Kirschner
  • Catherine E. Costello
  • Peter B. O’Connor
Article

Abstract

The use of a new electrospray qQq Fourier transform ion cyclotron mass spectrometer (qQq-FTICR MS) instrument for biologic applications is described. This qQq-FTICR mass spectrometer was designed for the study of post-translationally modified proteins and for top-down analysis of biologically relevant protein samples. The utility of the instrument for the analysis of phosphorylation, a common and important post-translational modification, was investigated. Phosphorylation was chosen as an example because it is ubiquitous and challenging to analyze. In addition, the use of the instrument for top-down sequencing of proteins was explored since this instrument offers particular advantages to this approach. Top-down sequencing was performed on different proteins, including commercially available proteins and biologically derived samples such as the human E2 ubiquitin conjugating enzyme, UbCH10. A good sequence tag was obtained for the human UbCH10, allowing the unambiguous identification of the protein. The instrument was built with a commercially produced front end: a focusing rf-only quadrupole (Q0), followed by a resolving quadrupole (Q1), and a LINAC quadrupole collision cell (Q2), in combination with an FTICR mass analyzer. It has utility in the analysis of samples found in substoichiometric concentrations, as ions can be isolated in the mass resolving Q1 and accumulated in Q2 before analysis in the ICR cell. The speed and efficacy of the Q2 cooling and fragmentation was demonstrated on an LCMS-compatible time scale, and detection limits for phosphopeptides in the 10 amol/µL range (pM) were demonstrated. The instrument was designed to make several fragmentation methods available, including nozzle-skimmer fragmentation, Q2 collisionally activated dissociation (Q2 CAD), multipole storage assisted dissociation (MSAD), electron capture dissociation (ECD), infrared multiphoton induced dissociation (IRMPD), and sustained off resonance irradiation (SORI) CAD, thus allowing a variety of MSn experiments. A particularly useful aspect of the system was the use of Q1 to isolate ions from complex mixtures with narrow windows of isolation less than 1 m/z. These features enable top-down protein analysis experiments as well structural characterization of minor components of complex mixtures.

References

  1. 1.
    Costello, C. E. Time, life…and mass spectrometry. New techniques to address biological questions. Biophys. Chem. 1997, 68, 173–188.CrossRefGoogle Scholar
  2. 2.
    Karas, M.; Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 Daltons. Anal. Chem. 1988, 60, 2299–2301.CrossRefGoogle Scholar
  3. 3.
    Zubarev, R. A.; Kelleher, N. L.; McLafferty, F. W. Electron capture dissociation of multiply charged protein cations—a nonergodic process. J. Am. Chem. Soc. 1998, 120, 3265–3266.CrossRefGoogle Scholar
  4. 4.
    Zubarev, R. A.; Kruger, N. A.; Fridriksson, E. K.; Lewis, M. A.; Horn, D. M.; Carpenter, B. K.; McLafferty, F. W. Electron capture dissociation of gaseous multiply-charged proteins is favored at disulfide bonds and other sites of high hydrogen atom affinity. J. Am. Chem. Soc. 1999, 121, 2857–2862.CrossRefGoogle Scholar
  5. 5.
    Leymarie, N.; Costello, C. E.; O’Connor, P. B. Electron capture dissociation initiates a free radical reaction cascade. J. Am. Chem. Soc. 2003, 125, 8949–8958.CrossRefGoogle Scholar
  6. 6.
    Syka, J. E.; Coon, J. J.; Schroeder, M. J.; Shabanowitz, J.; Hunt, D. F. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 9528–9533.CrossRefGoogle Scholar
  7. 7.
    Kelleher, R. L.; Zubarev, R. A.; Bush, K.; Furie, B.; Furie, B. C.; McLafferty, F. W.; Walsh, C. T. Localization of labile posttranslational modifications by electron capture dissociation: The case of γ-carboxyglutamic acid. Anal. Chem. 1999, 71, 4250–4253.CrossRefGoogle Scholar
  8. 8.
    Stensballe, A.; Jensen, O. N.; Olsen, J. V.; Haselmann, K. F.; Zubarev, R. A. Electron capture dissociation of singly and multiply phosphorylated peptides. Rapid Commun. Mass Spectrom. 2000, 14, 1793–1800.CrossRefGoogle Scholar
  9. 9.
    Shi, S. D. H.; Hemling, M. E.; Carr, S. A.; Horn, D. M.; Lindh, I.; McLafferty, F. W. Phosphopeptide/phosphoprotein mapping by electron capture dissociation mass spectrometry. Anal. Chem. 2001, 73, 19–22.CrossRefGoogle Scholar
  10. 10.
    Mirgorodskaya, E.; Roepstorff, P.; Zubarev, R. A. Localization of O-glycosylation sites in peptides by electron capture dissociation in a Fourier transform mass spectrometer. Anal. Chem. 1999, 71, 4431–4436.CrossRefGoogle Scholar
  11. 11.
    Silivra, O. A.; Kjeldsen, F.; Ivonin, I. A.; Zubarev, R. A. Electron capture dissociation of polypeptides in a three-dimensional quadrupole ion trap: Implementation and first results. J. Am. Soc. Mass Spectrom. 2005, 16, 22–27.CrossRefGoogle Scholar
  12. 12.
    Baba, T.; Hashimoto, Y.; Hasegawa, H.; Hirabayashi, A.; Waki, I. Electron capture dissociation in a radio frequency ion trap. Anal. Chem. 2004, 76, 4263–4266.CrossRefGoogle Scholar
  13. 13.
    Palmblad, M.; Wetterhall, M.; Markides, K.; Hakansson, P.; Bergquist, J. Analysis of enzymatically digested proteins and protein mixtures using a 9.4 tesla Fourier transform ion cyclotron mass spectrometer. Rapid Commun. Mass Spectrom. 2000, 14, 1029–1034.CrossRefGoogle Scholar
  14. 14.
    Green, M. K.; Johnston, M. V.; Larsen, B. S. Mass accuracy and sequence requirements for protein database searching. Anal. Biochem. 1999, 275, 39–46.CrossRefGoogle Scholar
  15. 15.
    Conrads, T. P.; Anderson, G. A.; Veenstra, T. D.; Pasa-Tolic, L.; Smith, R. D. Utility of accurate mass tags for proteome-wide protein identification. Anal. Chem. 2000, 72, 3349–3354.CrossRefGoogle Scholar
  16. 16.
    Zubarev, R. A.; Hakansson, P.; Sundqvist, B. Accuracy requirements for peptide characterization by monoisotopic molecular mass measurements. Anal. Chem. 1996, 68, 4060–4063.CrossRefGoogle Scholar
  17. 17.
    Strittmatter, E. F.; Ferguson, P. L.; Tang, K.; Smith, R. D. Proteome analyses using accurate mass and elution time peptide tags with capillary LC time-of-flight mass spectrometry. J. Am. Soc. Mass Spectrom. 2003, 14, 980–991.CrossRefGoogle Scholar
  18. 18.
    Olsen, J. V.; Ong, S. E.; Mann, M. Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol. Cell. Proteom. 2004, 3, 608–614.CrossRefGoogle Scholar
  19. 19.
    Hughey, C. A.; Rodgers, R. P.; Marshall, A. G. Resolution of 11,000 compositionally distinct components in a single electrospray ionization Fourier transform ion cyclotron resonance mass spectrum of crude oil. Anal. Chem. 2002, 74, 4145–4149.CrossRefGoogle Scholar
  20. 20.
    Spengler, B. De novo sequencing, peptide composition analysis, and composition-based sequencing: A new strategy employing accurate mass determination by Fourier transform ion cyclotron resonance mass spectrometry. J. Am. Soc. Mass Spectrom. 2004, 15, 703–714.CrossRefGoogle Scholar
  21. 21.
    Kelleher, N. L.; Taylor, S. V.; Grannis, D.; Kinsland, C.; Chiu, H. J.; Begley, T. P.; McLafferty, F. W. Efficient sequence analysis of the six gene products (7–74 kDa) from the Escherichia coli thiamin biosynthetic operon by tandem high-resolution mass spectrometry. Protein Sci. 1998, 7, 1796–1801.CrossRefGoogle Scholar
  22. 22.
    Mann, M.; Wilm, M. Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Anal. Chem. 1994, 66, 4390–4399.CrossRefGoogle Scholar
  23. 23.
    Eng, J. K.; McCormack, A. L.; Yates, J. R. I. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 1994, 5, 976–989.CrossRefGoogle Scholar
  24. 24.
    McLafferty, F. W. High-resolution tandem FT mass spectrometry above 10 kDa. Acc. Chem. Res. 1994, 27, 379–386.CrossRefGoogle Scholar
  25. 25.
    Kelleher, N. L.; Costello, C. A.; Begley, T. P.; McLafferty, F. W. Thiaminase I (42 kDa) heterogeneity, sequence refinement, and active site location from high-resolution tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 1995, 6, 981–984.CrossRefGoogle Scholar
  26. 26.
    Mortz, E.; Oconnor, P. B.; Roepstorff, P.; Kelleher, N. L.; Wood, T. D.; McLafferty, F. W.; Mann, M. Sequence tag identification of intact proteins by matching tandem mass spectral data against sequence data bases. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 8264–8267.CrossRefGoogle Scholar
  27. 27.
    Pittman, J. L.; Thomson, B. A.; Budnik, B. A.; Cournoyer, J. J.; Fallows, E.; Jebanathirajah, J. A.; Moyer, S. C.; Costello, C. E.; O’Connor, P. B. A novel hybrid instrument using a commercial electrospray ionization source with a high-performance FTMS for proteomics applications. Proceedings of the 52nd Conference of the American Society of Mass Spectrometry; Memphis, TN, May 2004.Google Scholar
  28. 28.
    Loboda, A.; Krutchinsky, A.; Loboda, O.; McNabb, J.; Spicer, V.; Ens, W.; Standing, K. G. Novel linac II electrode geometry for creating an axial field in a multipole ion guide. Eur. J. Mass Spectrom 2000, 6, 531–536.CrossRefGoogle Scholar
  29. 29.
    Wilcox, B. E.; Hendrickson, C. L.; Marshall, A. G. Improved ion extraction from a linear octopole ion trap: SIMION analysis and experimental demonstration. J. Am. Soc. Mass Spectrom. 2002, 13, 1304–1312.CrossRefGoogle Scholar
  30. 30.
    McFarland, M. A.; Hendrickson, C. L.; Marshall, A. G. Ion “threshing”: Collisionally activated dissociation in an external octopole ion trap by oscillation of an axial electric potential gradient. Anal. Chem. 2004, 76, 1545–1549.CrossRefGoogle Scholar
  31. 31.
    Pittman, J. L.; O’Connor, P. B. A minimum thickness gate valve with integrated ion optics for mass spectrometry. J. Am. Soc. Mass Spectrom. 2005, 16, 441–445.CrossRefGoogle Scholar
  32. 32.
    Beu, S. C.; Laude, D. A., Jr. Open trapped ion cell geometries for FT/ICR/MS. Int. J. Mass Spectrom. Ion Processes 1992, 112, 215–230.CrossRefGoogle Scholar
  33. 33.
    Marshall, A. G.; Wang, T.-C. L.; Ricca, T. L. Tailored excitation for Fourier transform ion cyclotron resonance mass spectrometry. J. Am. Chem. Soc. 1985, 107, 7893–7897.CrossRefGoogle Scholar
  34. 34.
    Gauthier, J. W.; Trautman, T. R.; Jacobson, D. B. Sustained off-resonance irradiation for collision-activated dissociation involving Fourier-transform mass spectrometry collision-activated dissociation technique that emulates infrared multiphoton dissociation. Anal. Chim. Acta 1991, 1, 211–225.CrossRefGoogle Scholar
  35. 35.
    Little, D. P.; Speir, J. P.; Senko, M. W.; O’Connor, P. B.; McLafferty, F. W. Infrared multiphoton dissociation of large multiply-charged ions for biomolecule sequencing. Anal. Chem. 1994, 66, 2809–2815.CrossRefGoogle Scholar
  36. 36.
    Mirgorodskaya, E.; O’Connor, P. B.; Costello, C. E. A general method for precalculation of parameters for sustained off resonance irradiation/collision-induced dissociation. J. Am. Soc. Mass Spectrom. 2002, 13, 318–324.CrossRefGoogle Scholar
  37. 37.
    Belov, M. E.; Anderson, G. A.; Angell, N. H.; Shen, Y. F.; Tolic, N.; Udseth, H. R.; Smith, R. D. Dynamic range expansion applied to mass spectrometry based on data-dependent selective ion ejection in capillary liquid chromatography Fourier transform ion cyclotron resonance for enhanced proteome characterization. Anal. Chem. 2001, 73, 5052–5060.CrossRefGoogle Scholar
  38. 38.
    Senko, M. W.; Hendrickson, C. L.; Pasatolic, L.; Marto, J. A.; White, F. M.; Guan, S. H.; Marshall, A. G. Electrospray ionization Fourier transform ion cyclotron resonance at 9.4 T. Rapid Commun. Mass Spectrom. 1996, 10, 1824–1828.CrossRefGoogle Scholar
  39. 39.
    Senko, M. W.; Hendrickson, C. L.; Emmett, M. R.; Shi, S. D. H.; Marshall, A. G. External accumulation of ions for enhanced electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. J. Am. Soc. Mass Spectrom. 1997, 8, 970–976.CrossRefGoogle Scholar
  40. 40.
    Patrie, S. M.; Charlebois, J. P.; Whipple, D.; Kelleher, N. L.; Hendrickson, C. L.; Quinn, J. P.; Marshall, A. G.; Mukhopadhyay, B. Construction of a hybrid quadrupole/Fourier transform ion cyclotron resonance mass spectrometer for versatile MS/MS above 10 kDa. J. Am. Soc. Mass Spectrom. 2004, 15, 1099–1108.CrossRefGoogle Scholar
  41. 41.
    Shevchenko, A.; Wilm, M.; Vorm, O.; Mann, M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 1996, 68, 850–858.CrossRefGoogle Scholar
  42. 42.
    Rappsilber, J.; Ishihama, Y.; Mann, M. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal. Chem. 2003, 75, 663–670.CrossRefGoogle Scholar
  43. 43.
    Gobom, J.; Nordhoff, E.; Mirgorodskaya, E.; Ekman, R.; Roepstorff, P. Sample purification and preparation technique based on nano-scale reversed-phase columns for the sensitive analysis of complex peptide mixtures by matrix-assisted laser desorption/ionization mass spectrometry. J. Mass Spectrom. 1999, 34, 105–116.CrossRefGoogle Scholar
  44. 44.
    Marshall, A. G.; Hendrickson, C. L.; Shi, S. D. Scaling MS plateaus with high-resolution FT-ICRMS. Anal. Chem. 2002, 74, 252A-259A.CrossRefGoogle Scholar
  45. 45.
    Cournoyer, J. J.; Pittman, J. L.; Ivleva, V. B.; Fallows, E.; Waskell, L.; Costello, C. E.; O’Connor, P. B. Deamidation: Differentiation of aspartyl from isoaspartyl products in peptides by electron capture dissociation. Protein Sci. 2005, 14, 452–463.CrossRefGoogle Scholar
  46. 46.
    Wilm, M.; Mann, M. Analytical properties of the nanoelectrospray ion source. Anal. Chem. 1996, 68, 1–8.CrossRefGoogle Scholar
  47. 47.
    Valaskovic, G. A.; Kelleher, N. L.; Little, D. P.; Aaserud, D. J.; McLafferty, F. W. Attomole-sensitivity electrospray source for large-molecule mass spectrometry. Anal. Chem. 1995, 67, 3802–3805.CrossRefGoogle Scholar
  48. 48.
    Stemmann, O.; Zou, H.; Gerber, S. A.; Gygi, S. P.; Kirschner, M. W. Dual inhibition of sister chromatid separation at metaphase. Cell 2001, 107, 715–726.CrossRefGoogle Scholar
  49. 49.
    Tsybin, Y. O.; Hakansson, P.; Budnik, B. A.; Haselmann, K. F.; Kjeldsen, F.; Gorshkov, M.; Zubarev, R. A. Improved low-energy electron injection systems for high rate electron capture dissociation in Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom. 2001, 15, 1849–1854.CrossRefGoogle Scholar
  50. 50.
    Budnik, B. A.; Haselmann, K. F.; Zubarev, R. A. Electron detachment dissociation of peptide di-anions: An electron-hole recombination phenomenon. Chem. Phys. Lett. 2001, 342, 299–302.CrossRefGoogle Scholar
  51. 51.
    Kelleher, N. L.; Lin, H. Y.; Valaskovic, G. A.; Aaserud, D. J.; Fridriksson, E. K.; McLafferty, F. W. Top-down versus bottom-up protein characterization by tandem high-resolution mass spectrometry. J. Am. Chem. Soc. 1999, 121, 806–812.CrossRefGoogle Scholar
  52. 52.
    Hopkins, C. E.; O’Connor, P. B.; Allen, K. N.; Costello, C. E.; Tolan, D. R. Chemical-modification rescue assessed by mass spectrometry demonstrates that gamma-thia-lysine yields the same activity as lysine in aldolase. Protein Sci. 2002, 11, 1591–1599.CrossRefGoogle Scholar
  53. 53.
    Nemeth-Crawley, J.; Rouse, J. Identification and sequencing analysis of intact proteins via collision-induced dissociation and quadrupole time-of-flight mass spectrometry. J. Mass Spectrom. 2002, 37, 270–282.CrossRefGoogle Scholar
  54. 54.
    Thevis, M.; Loo, R. R. O.; Loo, J. A. Mass spectrometric characterization of transferrins and their fragments derived by reduction of disulfide bonds. J. Am. Soc. Mass Spectrom. 2003, 14, 635–647.CrossRefGoogle Scholar
  55. 55.
    Ginter, J. M.; Zhou, F.; Johnston, M. V. Generating protein sequence tags by combining cone and conventional collision induced dissociation in a quadrupole time-of-flight mass spectrometer. J. Am. Soc. Mass Spectrom. 2004, 15, 1478–1486.CrossRefGoogle Scholar
  56. 56.
    Meng, F.; Du, Y.; Miller, L. M.; Patrie, S. M.; Robinson, D. E.; Kelleher, N. L. Molecular-level description of proteins from Saccharomyces cerevisiae using quadrupole FT hybrid mass spectrometry for top-down proteomics. Anal. Chem. 2004, 76, 2852–2858.CrossRefGoogle Scholar
  57. 57.
    Du, Y.; Meng, F. Y.; Patrie, S. M.; Miller, L. M.; Kelleher, N. L. Improved molecular weight-based processing of intact proteins for interrogation by quadrupole-enhanced FT MS/MS. J. Proteome Res. 2004, 3, 801–806.CrossRefGoogle Scholar
  58. 58.
    Horn, D. M.; Zubarev, R. A.; McLafferty, F. W. Automated reduction and interpretation of high resolution electrospray mass spectra of large molecules. J. Am. Soc. Mass Spectrom. 2000, 11, 320–332.CrossRefGoogle Scholar
  59. 59.
    Taylor, G. K.; Kim, Y. B.; Forbes, A. J.; Meng, F.; McCarthy, R.; Kelleher, N. L. Web and database software for identification of intact proteins using top-down mass spectrometry. Anal. Chem. 2003, 75, 4081–4086.CrossRefGoogle Scholar
  60. 60.
    LeDuc, R. D.; Taylor, G. K.; Kim, Y. B.; Januszyk, T. E.; Bynum, L. H.; Sola, J. V.; Garavelli, J. S.; Kelleher, N. L. ProSight PTM: An integrated environment for protein identification and characterization by top-down mass spectrometry. Nucleic Acids Res. 2004, 32, W340-W345.CrossRefGoogle Scholar
  61. 61.
    Forbes, A. J.; Patrie, S. M.; Taylor, G. K.; Kim, Y. B.; Jiang, L.; Kelleher, N. L. Targeted analysis and discovery of posttranslational modifications in proteins from Methanogenic archaea by top-down MS. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 2678–2683.CrossRefGoogle Scholar
  62. 62.
    Kaur, P.; Aizikov, K.; O’Connor, P. B. Improved algorithms for interpretation of high resolution mass spectra. Proceedings of the 52nd Conference of the American Society of Mass Spectrometry; Memphis, TN, May 2004.Google Scholar
  63. 63.
    Horn, D. M.; Zubarev, R. A.; McLafferty, F. W. Automated de novo sequencing of proteins by tandem high-resolution mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 10313–10317.CrossRefGoogle Scholar
  64. 64.
    Senko, M. W.; Beu, S. C.; McLafferty, F. W. Determination of monoisotopic masses and ion populations for large biomolecules from resolved isotopic distributions. J. Am. Soc. Mass Spectrom. 1995, 6, 229–233.CrossRefGoogle Scholar
  65. 65.
    Rockwood, A. L.; Vanorden, S. L. Ultrahigh-speed calculation of isotope distributions. Anal. Chem. 1996, 68, 2027–2030.CrossRefGoogle Scholar
  66. 66.
    Geoghegan, K. F.; Dixon, H. B. F.; Rosner, P. J.; Hoth, L. R.; Lanzetti, A. J.; Borzilleri, K. A.; Marr, E. S.; Pezzullo, L. H.; Martin, L. B.; LeMotte, P. K.; McColl, A. S.; Kamath, A. V.; Stroh, J. G. Spontaneous α-N-6-phosphogluconoylation of a “His tag” in Escherichia coli: The cause of extra mass of 258 or 178 Da in fusion proteins. Anal. Biochem. 1999, 267, 169–184.CrossRefGoogle Scholar
  67. 67.
    Seo, J.; Lee, K. J. Post-translational modifications and their biological functions: Proteomics analysis and systematic approaches. J. Biochem. Mol. Biol. 2004, 37, 35–44.CrossRefGoogle Scholar
  68. 68.
    Mirgorodskaya, E.; Hassan, H.; Clausen, H.; Roepstorff, P. Mass spectrometric determination of O-glycosylation sites using β-elimination and partial acid hydrolysis. Anal. Chem. 2001, 73, 1263–1269.CrossRefGoogle Scholar
  69. 69.
    O’Connor, P. B.; Duursma, M. C.; van Rooij, G. J.; Heeren, R. M. A.; Boon, J. J. Correction of time of flight shifted polymeric molecular weight distributions in MALDI-FTMS. Anal. Chem. 1997, 69, 2751–2755.CrossRefGoogle Scholar
  70. 70.
    Nielsen, M. L.; Bennett, K. L.; Larsen, B.; Moniatte, M.; Mann, M. Peptide end sequencing by orthogonal MALDI tandem mass spectrometry. J. Proteome Res. 2002, 1, 63–71.CrossRefGoogle Scholar
  71. 71.
    Jebanathirajah, J.; Steen, H.; Roepstorff, P. Using optimized collision energies and high resolution, high accuracy fragment ion selection to improve glycopeptide detection by precursor ion scanning. J. Am. Soc. Mass Spectrom. 2003, 14, 777–784.CrossRefGoogle Scholar
  72. 72.
    Steen, H.; Kuster, B.; Fernandez, M.; Pandey, A.; Mann, M. Detection of tyrosine phosphorylated peptides by precursor ion scanning quadrupole TOF mass spectrometry in positive ion mode. Anal. Chem. 2001, 73, 1440–1448.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2005

Authors and Affiliations

  • Judith A. Jebanathirajah
    • 1
    • 2
    • 4
  • Jason L. Pittman
    • 1
  • Bruce A. Thomson
    • 2
  • Bogdan A. Budnik
    • 1
    • 3
  • Parminder Kaur
    • 3
  • Michael Rape
    • 4
  • Marc Kirschner
    • 4
  • Catherine E. Costello
    • 1
    • 3
  • Peter B. O’Connor
    • 1
    • 3
  1. 1.Mass Spectrometry Resource, Department of BiochemistryBoston University School of MedicineBostonUSA
  2. 2.MDS-SCIEXConcordCanada
  3. 3.Cardiovascular Proteomics CenterBoston University School of MedicineBostonUSA
  4. 4.Department of Systems BiologyHarvard Medical SchoolBostonUSA

Personalised recommendations