New and automated MSn approaches for top-down identification of modified proteins

  • Vlad Zabrouskov
  • Michael W. Senko
  • Yi Du
  • Richard D. Leduc
  • Neil L. Kelleher


An automated top-down approach including data-dependent MS3 experiment for protein identification/characterization is described. A mixture of wild-type yeast proteins has been separated on-line using reverse-phase liquid chromatography and introduced into a hybrid linear ion trap (LTQ) Fourier transform ion cylclotron resonance (FTICR) mass spectrometer, where the most abundant molecular ions were automatically isolated and fragmented. The MS2 spectra were interpreted by an automated algorithm and the resulting fragment mass values were uploaded to the ProSight PTM search engine to identify three yeast proteins, two of which were found to be modified. Subsequent MS3 analyses pinpointed the location of these modifications. In addition, data-dependent MS3 experiments were performed on standard proteins and wild-type yeast proteins using the stand alone linear trap mass spectrometer. Initially, the most abundant molecular ions underwent collisionally activated dissociation, followed by data-dependent dissociation of only those MS2 fragment ions for which a charge state could be automatically determined. The resulting spectra were processed to identify amino acid sequence tags in a robust fashion. New hybrid search modes utilized the MS3 sequence tag and the absolute mass values of the MS2 fragment ions to collectively provide unambiguous identification of the standard and wild-type yeast proteins from custom databases harboring a large number of post-translational modifications populated in a combinatorial fashion.


  1. 1.
    Henzel, W. J.; Billeci, T. M.; Stults, J. T.; Wong, S. C.; Grimley, C.; Watanabe, C. Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 5011–5015.CrossRefGoogle Scholar
  2. 2.
    Yates, J. R., III; Carmack. E.; Hays,. L.; Link. A. J.; Eng. J. K. Automated protein identification using microcolumn liquid chromatography-tandem mass spectrometry. Methods Mol. Biol. 1999, 112, 553–569.Google Scholar
  3. 3.
    Reid, G. E.; McLuckey, S. A. Top down protein characterization via tandem mass spectrometry. J. Mass Spectrom. 2002, 37, 663–675.CrossRefGoogle Scholar
  4. 4.
    Kelleher, N. L. Top down proteomics. Anal. Chem. 2004, 76, 197A-203A.CrossRefGoogle Scholar
  5. 5.
    Reid, G. E., Stephenson, J. L., McLuckey, S. A. Tandem mass spectrometry of ribonuclease A and B: N-linked glycosylation site analysis of whole protein ions. Anal. Chem 2002, 74, 577–583.CrossRefGoogle Scholar
  6. 6.
    Meng, F.; Cargile, B. J.; Miller, L. M.; Forbes, A. J.; Johnson, J. R.; Kelleher, N. L. Informatics and multiplexing of intact protein identification in bacteria and the archaea. Nat. Biotech. 2001, 19, 952–957.CrossRefGoogle Scholar
  7. 7.
    Baba, T.; Hashimoto, Y.; Hasegawa, H.; Hirabayashi, A.; Waki, I. Electron capture dissociation in a radio frequency ion trap. Anal. Chem. 2004, 76, 4263–4266.CrossRefGoogle Scholar
  8. 8.
    Ginter, J. M.; Zhou, F.; Johnston, M. V. Generating protein sequence tags by combining cone and conventional collision induced dissociation in a quadrupole time-of-flight mass spectrometer. J. Am. Soc. Mass Spectrom. 2004, 15, 1478–1486.CrossRefGoogle Scholar
  9. 9.
    Nemeth-Cawley, J. F.; Tangarone, B. S.; Rouse, J. C. “Top Down” characterization is a complementary technique to peptide sequencing for identifying protein species in complex mixtures. J. Proteome Res. 2003, 2, 495–505.CrossRefGoogle Scholar
  10. 10.
    Amunugama, R.; Hogan, J. M.; Newton, K. A.; McLuckey, S. A. Whole protein dissociation in a quadrupole ion trap: Identification of an a priori unknown modified protein. Anal. Chem. 2004, 76, 720–727.CrossRefGoogle Scholar
  11. 11.
    Senko, M. W.; Speir, J. P.; McLafferty, F. W. Collisional activation of large multiply charged ions using Fourier transform mass spectrometry. Anal. Chem. 1994, 66, 2801–2808.CrossRefGoogle Scholar
  12. 12.
    Mortz, E.; O’Connor. P. B.; Roepstorff, P.; Kelleher, N. L.; Wood, T. D.; McLafferty, F. W.; Mann, M. Sequence tag identification of intact proteins by matching tandem mass spectral data against sequence data bases. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 8264–8267.CrossRefGoogle Scholar
  13. 13.
    Meng, F.; Du, Y.; Miller, L. M.; Patrie, S. M.; Robinson, D. E.; Kelleher, N. L. Molecular-level description of proteins from Saccharomyces cerevisiae using quadrupole FT hybrid mass spectrometry for top down proteomics. Anal. Chem 2004, 76, 2852–2858.CrossRefGoogle Scholar
  14. 14.
    Taylor, G. K.; Kim, Y. B.; Forbes, A. J.; Meng, F.; McCarthy, R.; Kelleher, N. L. Web and database software for identification of intact proteins using “top down” mass spectrometry. Anal. Chem. 2003, 75, 4081–4086.CrossRefGoogle Scholar
  15. 15.
    LeDuc, R. D.; Taylor, G. K.; Kim, Y. B.; Januszyk, T. E.; Bynum, L. H.; Sola, J. V.; Garavelli, J. S.; Kelleher, N. L. ProSight PTM: an integrated environment for protein identification and characterization by top-down mass spectrometry. Nucleic Acids Res. 2004, 32, W340-W345.CrossRefGoogle Scholar
  16. 16.
    Pesavento, J. J.; Kim, Y. B.; Taylor, G. K.; Kelleher, N. L. Shotgun annotation of histone modifications: a new approach for streamlined characterization of proteins by top down mass spectrometry. J. Am. Chem. Soc. 2004, 126, 4081–4086.CrossRefGoogle Scholar
  17. 17.
    Zubarev, R. A.; Kelleher, N. L.; McLafferty, F. W. Electron capture dissociation of multiply charged protein cations. A nonergodic process. J. Am. Chem. Soc. 1998, 120, 3265–3266.CrossRefGoogle Scholar
  18. 18.
    Zubarev, R. A.; Kruger, N. A.; Fridriksson, E. K.; Lewis, M. A.; Horn, D. M.; Carpenter, B. K.; McLafferty, F. W. Electron capture dissociation of gaseous multiply-charged proteins is favored at disulfide bonds and other sites of high hydrogen atom affinity. J. Am. Chem. Soc. 1999, 121, 2857–2862.CrossRefGoogle Scholar
  19. 19.
    Zubarev, R. A.; Horn, D. M.; Fridriksson, E. K.; Kelleher, N. L.; Kruger, N. A.; Lewis, M. A.; Carpenter, B. K.; McLafferty, F. W. Electron capture dissociation for structural characterization of multiply charged protein cations. Anal. Chem. 2000, 72, 563–573.CrossRefGoogle Scholar
  20. 20.
    Sze, S. K.; Ge, Y.; Oh, H.; McLafferty, F. W. Plasma electron capture dissociation for the characterization of large proteins by top down mass spectrometry. Anal. Chem. 2003, 75, 1599–1603.CrossRefGoogle Scholar
  21. 21.
    Sze, S. K.; Ge, Y.; Oh, H.; McLafferty, F. W. Top-down mass spectrometry of a 29-kDa protein for characterization of any posttranslational modification to within one residue. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 1774–1779.CrossRefGoogle Scholar
  22. 22.
    Ge, Y.; El-Naggar, M.; Sze, S. K.; Oh, H. B.; Begley, T. P.; McLafferty, F. W.; Boshoff, H.; Barry, C. E. Top down characterization of secreted proteins from Mycobacterium tuberculosis by electron capture dissociation mass spectrometry. J. Am. Soc. Mass Spectrom. 2003, 14, 253–261.CrossRefGoogle Scholar
  23. 23.
    Syka, J. E.; Coon, J. J.; Schroeder, M. J.; Shabanowitz, J.; Hunt, D. F. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 9528–9533.CrossRefGoogle Scholar
  24. 24.
    Wu, S. L.; Jardine, I.; Hancock, W. S.; Karger, B. L. A new and sensitive on-line liquid chromatography/mass spectrometric approach for top-down protein analysis: The comprehensive analysis of human growth hormone in an E. coli lysate using a hybrid linear ion trap/Fourier transform ion cyclotron resonance mass spectrometer. Rapid Commun. Mass Spectrom 2004, 18, 2201–2207.CrossRefGoogle Scholar
  25. 25.
    Strader, M. B.; Verberkmoes, N. C.; Tabb, D. L.; Connelly, H. M.; Barton, J. W.; Bruce, B. D.; Pelletier, D. A.; Davison, B. H.; Hettich, R. L.; Larimer, F. W.; Hurst, G. B. Characterization of the 70S Ribosome from Rhodopseudomonas palustris using an integrated “top-down” and “bottom-up” mass spectrometric approach. J. Proteome Res. 2004, 3, 965–978.CrossRefGoogle Scholar
  26. 26.
    Du, Y.; Meng, F.; Patrie, S. M.; Miller, L. M.; Kelleher, N. L. Improved molecular weight-based processing of intact proteins for interrogation by quadrupole-enhanced FT MS/MS. J. Proteome Res. 2004, 3, 801–806.CrossRefGoogle Scholar
  27. 27.
    Olsen, J. V.; Mann, M. Improved peptide identification in proteomics by two consecutive stages of mass spectrometric fragmentation. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 13417–13422.CrossRefGoogle Scholar
  28. 28.
    LeDuc, R. D.; Roth, M. J.; Boyne, M. T., II; Kim, Y.; Forbes, A. J.; Kelleher N. L. The bioinformatics of human top down proteomics. Proceedings of the 53rd Annual Meeting of the American Society for Mass Spectrometry; San Antonio, TX, June 2005.Google Scholar
  29. 29.
    Patrie, S. M.; Charlebois, J. P.; Whipple, D.; Kelleher, N. L.; Hendrickson, C. L.; Quinn, J. P.; Marshall, A. G.; Mukhopadhyay, B. Construction of a hybrid quadrupole/Fourier transform ion cyclotron resonance mass spectrometer for versatile MS/MS above 10 kDa. J. Am. Soc. Mass Spectrom. 2004, 15, 1099–1108.CrossRefGoogle Scholar
  30. 30.
    Coon, J. J.; Ueberheide, B.; Syka, J. E.; Dryhurst, D. D.; Ausio, J.; Shabanowitz, J.; Hunt, D. F. Protein identification using sequential ion/ion reactions and tandem mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 9463–9468CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2005

Authors and Affiliations

  • Vlad Zabrouskov
    • 1
  • Michael W. Senko
    • 1
  • Yi Du
    • 2
  • Richard D. Leduc
    • 2
  • Neil L. Kelleher
    • 2
  1. 1.Thermo Electron CorporationSan JoseUSA
  2. 2.Department of ChemistryUniversity of IllinoisUrbanaUSA

Personalised recommendations