Investigation of the presence of b ions in electron capture dissociation mass spectra

Article

Abstract

Previously, we have indicated (Cooper, H.J., et al. Int. J. Mass Spectrom., 2003, 228, 723–728) that electron capture dissociation (ECD) of the doubly protonated peptides, Leu4-Sar-Leu3-Lys-OH, Leu4-Ala-Leu3-Lys-OH, Gly4-Sar-Gly3-Lys-NH2, and Gly3-Pro-Sar-Gly3-Lys-NH2, results in abundant b ions, which derive from fragmentation of backbone amide bonds, a nonstandard fragmentation channel in ECD. The instrumental conditions were such that the possibility that collision-induced dissociation processes were contributing to the observed spectra was eliminated. In a separate study (Fung, Y.M.E., et al. Eur. J. Mass Spectrom., 2004, 10, 449–457. ECD of peptides Arg-(Gly)n-Xxx-(Gly)n-Arg, where Xxx is the amino acid of interest, did not result in b ions. The variation in ECD observed for strikingly similar peptides suggests that the nature of the charge carrier (Arg or Lys) is instrumental in governing the fragmentation channels. Here, we describe the ECD behavior of a suite of model peptides designed such that the nature and position of the charge carrier could be probed. The results suggest that the presence of b ions in ECD spectra is a consequence of both charge carrier and peptide structure. Possible mechanisms for the formation of b ions following electron capture are discussed.

References

  1. 1.
    Zubarev, R. A.; Kelleher, N. L.; McLafferty, F. W. ECD of Multiply Charged Protein Cations. A Non-Ergodic Process. J. Am. Chem. Soc. 1998, 120, 3265–3266.CrossRefGoogle Scholar
  2. 2.
    Marshall, A. G.; Hendrickson, C. L.; Jackson, G. S. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: A Primer. Mass. Spectrom. Rev. 1998, 17, 1–35.CrossRefGoogle Scholar
  3. 3.
    Roepstorff, P.; Fohlman, J. Proposal for a Common Nomenclature for Sequence Ions in Mass Spectra of Peptides. Biol. Mass. Spectrom. 1984, 11, 601.CrossRefGoogle Scholar
  4. 4.
    Biemann, K. Contributions of Mass Spectrometry to Peptide and Protein Structure. Biomed. Environ. Mass. 1988, 16, 99–111.CrossRefGoogle Scholar
  5. 5.
    Zubarev, R. A.; Kruger, N. A.; Fridriksson, E. K.; Lewis, M. A.; Horn, D. M.; Carpenter, B. K.; McLafferty, F. W. ECD of Gaseous Multiply Charged Proteins is Favored at Disulfide Bonds and Other Sites of High Hydrogen Atom Affinity. J. Am. Chem. Soc. 1999, 121, 2857–2862.CrossRefGoogle Scholar
  6. 6.
    Kelleher, N. L.; Zubarev, R. A.; Bush, K.; Furie, B.; Furie, B. C.; McLafferty, F. W.; Walsh, C. T. Localization of Labile Posttranslational Modifications by ECD: The Case of Gamma-Carboxyglutamic Acid. Anal. Chem. 1999, 71, 4250–4253.CrossRefGoogle Scholar
  7. 7.
    Stensballe, A.; Jensen, O. N.; Olsen, J. V.; Haselmann, K. F.; Zubarev, R. A. ECD of Singly and Multiply Phosphorylated Peptides. Rapid. Commun. Mass. Spectrom. 2000, 14, 1793–1800.CrossRefGoogle Scholar
  8. 8.
    Shi, S. D. -H.; Hemling, M. E.; Carr, S. A.; Horn, D. M.; Lindh, I.; McLafferty, F. W. Phosphopetide/Phosphoprotein Mapping by ECD Mass Spectrometry. Anal. Chem. 2001, 73, 19–22.CrossRefGoogle Scholar
  9. 9.
    Mirgorodskaya, E.; Roepstorff, P.; Zubarev, R. A. Localization of O-Glycosylation Sites in Peptides by ECD in a Fourier Transform Mass Spectrometer. Anal. Chem. 1999, 71, 4431–4436.CrossRefGoogle Scholar
  10. 10.
    Håkansson, K.; Cooper, H. J.; Emmett, M. R.; Costello, C. E.; Marshall, A. G.; Nilsson, C. L. ECD and IRMPD MS/MS of an N-Glycosylated Tryptic Peptide to Yield Complementary Sequence Information. Anal. Chem. 2001, 73, 4530–4536.CrossRefGoogle Scholar
  11. 11.
    Cooper, H. J.; Heath, J. K.; Jaffray, E.; Hay, R. T.; Lam, T. T.; Marshall, A. G. Identification of Sites of Ubiquitination in Proteins: A Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Approach. Anal. Chem. 2004, 76, 6982–6988.CrossRefGoogle Scholar
  12. 12.
    Breuker, K.; Oh, H.; Cerda, B.; Horn, D. M.; McLafferty, F. W. Hydrogen Atom Loss in ECD: A Fourier Transform Ion Cyclotron Resonance Study With Single Isotopomeric ions. Eur. J. Mass. Spectrom. 2002, 8, 177–180.CrossRefGoogle Scholar
  13. 13.
    Cooper, H. J.; Hudgins, R. R.; Håkansson, K.; Marshall, A. G. Characterization of Amino Acid Side Chain Losses in ECD. J. Am. Soc. Mass. Spectrom. 2002, 13, 241–249.CrossRefGoogle Scholar
  14. 14.
    Hudgins, R. R.; Håkansson, K.; Marshall, A. G. Procedings of the 49th ASMS Conference on Mass Spectrometry and Allied Topics; Chicago, IL; May 2001.Google Scholar
  15. 15.
    Hudgins, R. R.; Håkansson, K.; Quinn, J. P.; Hendrickson, C. L.; Marshall, A. G. Proceedings of the 50th ASMS Conference on Mass Spectrometry & Allied Topics; Orlando, FL; 2002.Google Scholar
  16. 16.
    Kruger, N. A.; Zubarev, R. A.; Carpenter, B. K.; Kelleher, N. L.; Horn, D. M.; McLafferty, F. W. Electron Capture Versus Energetic Dissociation of Protein Ions. Int. J. Mass Spectrom. 1999, 182/183, 1–5.CrossRefGoogle Scholar
  17. 17.
    McLafferty, F. W.; Horn, D. M.; Breuker, K.; Ge, Y.; Lewis, M. A.; Cerda, B.; Zubarev, R. A.; Carpenter, B. K. ECD of Gaseous Multiply Charged Ions by FTICR. J. Am. Soc. Mass. Spectrom. 2000, 12, 245–249.CrossRefGoogle Scholar
  18. 18.
    Syrstad, E. A.; Stephens, D. D.; Turecek, F. Hydrogen Atom Adducts to the Amide Bond. Generation and Energetics of Amide Radicals in the Gas Phase. J. Phys. Chem. A 2003, 107, 115–126.CrossRefGoogle Scholar
  19. 19.
    Syrstad, E. A.; Turecek, F. Hydrogen Atom Adducts to the Amide Bond. Generation and Energetics of the Amino(Hydroxyl) Methyl Radical in the Gas Phase. J. Phys. Chem. A 2001, 105, 11144–11155.CrossRefGoogle Scholar
  20. 20.
    Takayama, M. N—Calpha Bond Cleavage of the Peptide Backbone via Hydrogen Abstraction. J. Am. Soc. Mass. Spectrom. 2001, 12, 1044–1049.CrossRefGoogle Scholar
  21. 21.
    Turecek, F. N—Cα Bond Dissociation Energies and Kinetics in Amide and Peptide Radicals. Is the Dissociation a Non-Ergodic Process? J. Am. Chem. Soc. 2003, 125, 5954–5963.CrossRefGoogle Scholar
  22. 22.
    Turecek, F.; Syrstad, E. A. Mechanisms and Energetics of Intramolecular Hydrogen Transfer in Amide and Peptide Radicals and Cation Radicals. J. Am. Chem. Soc. 2003, 125, 3353–3369.CrossRefGoogle Scholar
  23. 23.
    Zubarev, R. A.; Haselmann, K. F.; Budnik, B. A.; Kjeldsen, F.; Jensen, F. Towards an Understanding of the Mechanism of Electron Capture Dissociation: A Historical Perspective and Modern Ideas. Eur. J. Mass. Spectrom. 2002, 8, 337–349.CrossRefGoogle Scholar
  24. 24.
    Breuker, K.; Oh, H.; Lin, C.; Carpenter, B. K.; McLafferty, F. W. Nonergodic and Conformational Control of the Electron Capture Dissociation of Protein Cations. Proc. Nat. Acad. Sci. 2004, 101, 14011–14016.CrossRefGoogle Scholar
  25. 25.
    Bakken, V.; Helgaker, T.; Uggerud, E. Models of Fragmentations Induced by Electron Attachment to Protonated Peptides. Eur. J. Mass. Spectrom. 2004, 10, 625–638.CrossRefGoogle Scholar
  26. 26.
    Al-Khalili, A.; Thomas, R.; Ehlerding, A.; Hellberg, F.; Geppert, W. D.; Zhaunerchyk, V.; Uggerud, E.; Vedde, J.; Adlhart, C.; Semaniak, J.; Kaminska, M.; Zubarev, R. A.; Kjeldsen, F.; Andersson, P. U.; Oesterdahl, F.; Bednarska, V. A.; Paal, A. Dissociative Recombination Cross Section and Branching Ratios of Protonated Dimethyl Disulfide and N-Methylacetamide. J. Chem. Phys. 2004, 121, 5700–5708.CrossRefGoogle Scholar
  27. 27.
    Syrstad, E. A.; Turecek, F. Towards a General Mechanism of Electron Capture Dissociation. J. Am. Soc. Mass. Spectrom. 2004, 16, 208–224.CrossRefGoogle Scholar
  28. 28.
    Cooper, H. J.; Hudgins, R. R.; Håkansson, K.; Marshall, A. G. Secondary Fragmentation of Linear Peptides in Electron Capture Dissociation. Int. J. Mass. Spectrom. 2003, 228, 723–728.CrossRefGoogle Scholar
  29. 29.
    Kjeldsen, F.; Haselmann, K. F.; Budnik, B. A.; Jensen, F.; Zubarev, R. A. Dissociative Capture of Hot (3–13 eV) Electrons by Polypeptide Polycations: An Efficient Process Accompanied by Secondary Fragmentation. Chem. Phys. Lett. 2002, 356, 201–206.CrossRefGoogle Scholar
  30. 30.
    Polfer, N. C.; Haselmann, K. F.; Zubarev, R. A.; Langridge-Smith, P. R. R. ECD of Polypeptides Using a 3 T FT-ICR Mass Spectrometer. Rapid Commun. Mass. Spectrom. 2002, 16, 936–943.CrossRefGoogle Scholar
  31. 31.
    Chan, T.-W. D.; Ip, W. H. H. Optimization of Experimental Parameters for ECD of Peptides in a Fourier Transfrom Mass Spectrometer. J. Am. Soc. Mass Spectrom. 2002, 13, 1396–1406.CrossRefGoogle Scholar
  32. 32.
    Fung, Y. M. E.; Duan, L.; Chan, T.-W. D. A Comparative Study of the Collision-Induced Dissociation and the Electron Capture Dissociation of Model Peptides Using Electrospray Ionization Fourier Transform Mass Spectrometry. Eur. J. Mass. Spectrom. 2004, 10, 449–457.CrossRefGoogle Scholar
  33. 33.
    Iavorone, A. T.; Paech, K.; Williams, E. R. Effects of Charge State and Cationizing Agent on the Electron Capture Dissociation of a Peptide. Anal. Chem. 2004, 76, 2231–2238.CrossRefGoogle Scholar
  34. 34.
    Senko, M. W.; Hendrickson, C. L.; Pasa-Tolic, L.; Marto, J. A.; White, F. M.; Guan, S.; Marshall, A. G. Electrospray Ionization FT-ICR Mass Spectrometry at 9. 4 Tesla. Rapid. Commun. Mass. Spectrom. 1996, 10, 1824–1828.CrossRefGoogle Scholar
  35. 35.
    Senko, M. W.; Hendrickson, C. L.; Emmett, M. R.; Shi, S. D.-H.; Marshall, A. G. External Accumulation of Ions for Enhanced Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. J. Am. Soc. Mass. Spectrom. 1997, 8, 970–976.CrossRefGoogle Scholar
  36. 36.
    Freitas, M. A.; Meade, M. E.; Blakney, G. T.; Lam, T. T.; McFarland, M. A.; Hendrickson, C. L.; Marshall, A. G. Proceedings of the 53rd ASMS Conference on Mass Spectrometry and Allied Topics; San Antonio, TX; May 2004.Google Scholar
  37. 37.
    Chowdhury, S. K.; Katta, V.; Chait, B. T. An Electrospray-Ionization Mass Spectrometer with New Features. Rapid Commun. Mass. Spectrom. 1990, 4, 81–87.CrossRefGoogle Scholar
  38. 38.
    Beu, S. C.; Laude, D. A.; Jr. Open Trapped Ion Cell Geometries for FT/ICR/MS. Int. J. Mass. Spectrom. Ion Proc. 1992, 112, 215–230.CrossRefGoogle Scholar
  39. 39.
    Malmberg, J. H.; O’Neil, T. M. Pure Electron Plasma, Liquid, and Crystal. Phys. Rev. Letters. 1977, 39, 1333–1336.CrossRefGoogle Scholar
  40. 40.
    Hendrickson, C. L.; Quinn, J. P.; Emmett, M. R.; Marshall, A. G. Proceedings of the 49th ASMS Conference on Mass Spectrometry and Allied Topics; Chicago, IL; May 2001.Google Scholar
  41. 41.
    Tsybin, Y. O.; Håkansson, P.; Budnik, B. A.; Haselmann, K. F.; Kjeldsen, F.; Gorshkov, M.; Zubarev, R. A. Improved Low-Energy Electron Injection Systems for High Rate Electron Capture Dissociation in Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Rapid Commun. Mass. Spectrom. 2001, 15, 1849–1854.CrossRefGoogle Scholar
  42. 42.
    Marshall, A. G.; Roe, D. C. Theory of Fourier transform Ion Cyclotron Resonance Mass Spectrospcopy: Response to Frequency Sweep Excitation. J. Chem. Phys. 1980, 73, 1581–1590.CrossRefGoogle Scholar
  43. 43.
    Senko, M. W.; Canterbury, J. D.; Guan, S.; Marshall, A. G. A High-Performance Modular Data System for FT-ICR Mass Spectrometry. Rapid Commun. Mass. Spectrom. 1996, 10, 1839–1844.CrossRefGoogle Scholar
  44. 44.
    Ledford, E. B. Jr.; Rempel, D. L.; Gross, M. L. Space Charge Effects in Fourier Transform Mass Spectrometry. Mass Calibration. Anal. Chem. 1984, 56, 2744–2748.CrossRefGoogle Scholar
  45. 45.
    Shi, S. D.-H.; Drader, J. J.; Freitas, M. A.; Hendrickson, C. L.; Marshall, A. G. Comparison and Interconversion of the Two Most Common Frequency-to-Mass Calibration Functions for Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Int. J. Mass Spectrom. 2000, 195/196, 591–598.CrossRefGoogle Scholar
  46. 46.
    Blakney, G. T.; van der Rest, G.; Johnson, J. R.; Freitas, M. A.; Drader, J. J.; Shi, S. D.-H.; Hendrickson, C. L.; Kelleher, N. L.; Marshall, A. G. Proceedings of the 49th ASMS Conference on Mass Spectrometry and Allied Topics; Chicago, IL; May 2001.Google Scholar
  47. 47.
    Håkansson, K.; Emmett, M. R.; Hendrickson, C. L.; Marshall, A. G. High-Sensitivity ECD Tandem FTICR Mass Spectrometry of Microelectrosprayed Peptides. Anal. Chem. 2001, 73, 3605–3610.CrossRefGoogle Scholar
  48. 48.
    Cordero, M. M.; Houser, J. J.; Wesdemiotis, C. The Neutral Products Formed During Backbone Fragmentations of Protonated Peptides in Tandem Mass Spectrometry. Anal. Chem. 1993, 65, 1594–1601.CrossRefGoogle Scholar
  49. 49.
    Haselmann, K. F.; Budnik, B. A.; Zubarev, R. A. ECD of b2+ Peptide Fragments Reveals the Presence of the Acylium Ion Structure. Rapid Commun. Mass. Spectrom. 2000, 14, 2242–2246.CrossRefGoogle Scholar
  50. 50.
    Wysocki, V. H.; Tsaprailis, G.; Smith, L. L.; Breci, L. A. Mobile and Localised Protons: A Framework for Understanding Peptide Dissociation. J. Mass. Spectrom. 2000, 35, 1399–1406.CrossRefGoogle Scholar
  51. 51.
    Kjeldsen, F.; Adams, C. M.; Zubarev, R. A. Proceedings of the 53rd ASMS Conference on Mass Spectrometry and Allied Topics; San Antonio, TX; June 2005.Google Scholar
  52. 52.
    Mihalca, R.; Kleinnijenhuis, A. J.; McDonnell, L. A.; Heck, A. J. R.; Heeren, R. M. A. ECD at Low Temperatures Reveals Selective Dissociations. J. Am. Soc. Mass. Spectrom. 2004, 15, 1869–1873.CrossRefGoogle Scholar
  53. 53.
    Valentine, S. J.; Counterman, A. E.; Hoaglund-Hyzer, C. S.; Clemmer, D. E. Intrinsic Amino Acid Size Parameters From a Series of 113 Lysine-Terminated Tryptic Digest Peptide Ions. J. Phys. Chem. B 1999, 103, 1204–1207.CrossRefGoogle Scholar
  54. 54.
    Gill, A. C.; Jennings, K. R.; Wyttenbach, T.; Bowers, M. T. Conformations of Bioploymers in the Gas-Phase: A New Spectrometric Method. Int. J. Mass Spectrom. 2000, 195/196, 685–697.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2005

Authors and Affiliations

  1. 1.School of BiosciencesUniversity of BirminghamEdgbastonUK

Personalised recommendations