Combined ion-mobility and mass-spectrometry investigations of metallothionein complexes using a tandem mass spectrometer with a segmented second quadrupole

  • Yuzhu Guo
  • Yun Ling
  • Bruce A. Thomson
  • K. W. Michael Siu
Article

Abstract

Rabbit metallothionein (MT) 2A complexes with Cd(II), Zn(II), Ag(I), Cu(I), Hg(II), arsenite, monomethylarsonous acid (MMA), and dimethylarsinous acid (DMA) have been examined using ion-mobility measurements and mass spectrometry in a triple-quadrupole mass spectrometer equipped with a segmented second quadrupole that doubled as an ion-mobility cell [Guo, Y.; Wang, J.; Javahery, G.; Thomson, B. A.; Siu, K. W. M. An Ion-Mobility Spectrometer with Radial Collisional Focusing. Anal. Chem.2005, 77, 266–275]. The metal ions confer conformational rigidity on the MT complexes, which counteracts Coulombic repulsion among protons added as a result of electrospray. Triply and quadruply protonated Cd7MT2A have smaller cross-sections than the Cd7MT2A structure deduced from published NMR data. For the 6+ ions, the As6MT2A complex has a cross-section of 790 Å2; the MMA10MT2A complex, 920 Å2; and the DMA20MT2A complex, 1220 Å2. This increase in cross-section of the As(III) species, from As3+ to MMA to DMA, is interpreted as a consequence of decreasing multiple coordination and increasing number of methyl groups.

References

  1. 1.
    Mason, E. A.; McDaniel, E. W. Transport Properties of Ions in Gases; John Wiley and Sons: New York, 1988.CrossRefGoogle Scholar
  2. 2.
    Revercomb, H. E.; Mason, E. A. Theory of Plasma Chromatography/Gaseous Electrophoresis. Anal. Chem. 1975, 47, 970–983.CrossRefGoogle Scholar
  3. 3.
    Clemmer, D. E.; Hudgins, R. R.; Jarrold, M. F. Naked Protein Conformations: Cytochrome c in the Gas Phase. J. Am. Chem. Soc. 1995, 117, 10141–10142.CrossRefGoogle Scholar
  4. 4.
    Wyttenbach, T.; von Helden, G.; Bowers, M. T. Gas-Phase Conformation of Biological Molecules: Bradykinin. J. Am. Chem. Soc. 1996, 118, 8355–8364.CrossRefGoogle Scholar
  5. 5.
    Hoaglund-Hyzer, C. S.; Counterman, A. E.; Clemmer, D. E. Anhydrous Protein Ions. Chem. Rev. 1999, 99, 3037–3079.CrossRefGoogle Scholar
  6. 6.
    McDaniel, E. W.; Mason, E. A. The Mobility and Diffusion of Ions in Gases; John Wiley and Sons: New York, 1973; 51–84, and references therein.Google Scholar
  7. 7.
    Guo, Y.; Wang, J.; Javahery, G.; Thomson, B. A.; Siu, K. W. M. An Ion Mobility Spectrometer with Radial Collisional Focusing. Anal. Chem 2005, 77, 266–275.CrossRefGoogle Scholar
  8. 8.
    Kagi, J. H. R.; Kojima, Y., Eds. Metallothionein II; Birkhauser Verlag: Basel, Germany, 1987.Google Scholar
  9. 9.
    Stillman, M. J.; Shaw, C. F., III; Suzuki, K. T., Eds. Metallothioneins: Synthesis, Structure, and Properties of Metallothioneins, Phytochelatins and Metal-Thiolate Complexes; VCH: New York, 1992.Google Scholar
  10. 10.
    Suzuki, K. T.; Imura, N.; Kimura, M., Eds. Metallothionein III; Birkhauser Verlag: Basel, Germany, 1993.Google Scholar
  11. 11.
    Arseniev, A.; Schultze, P.; Worgotter, E.; Braun, W.; Wagner, G.; Vasak, M.; Kagi, J. H.; Wuthrich, K. Three-Dimensional Structure of Rabbit Liver [Cd7] Metallothionein-2A in Aqueous Solution Determined by Nuclear Magnetic Resonance. J. Mol. Biol. 1988, 201, 637–657.CrossRefGoogle Scholar
  12. 12.
    Stillman, M. J.; Presta, A.; Gui, Z.; Jiang, D.-T. Spectroscopic Studies of Copper, Silver, and Gold-Metallothioneins. Metal-Based Drugs 1994, 1, 375–393.CrossRefGoogle Scholar
  13. 13.
    Li, H.; Otvos, J. D. HPLC Characterization of Ag+ and Cu+ Metal Exchange Reactions with Zn- and Cd-Metallothioneins. Biochemistry 1996, 35, 13937–13945.CrossRefGoogle Scholar
  14. 14.
    Stillman, M. J. Spectroscopic Studies of Copper and Silver Binding to Metallothioneins. Metal-Based Drugs 1999, 6, 277–290.CrossRefGoogle Scholar
  15. 15.
    Jiang, G.; Gong, Z.; Li, X.-F.; Cullen, W. R.; Le, X. C. Interaction of Trivalent Arsenicals with Metallothionein. Chem. Res. Toxicol. 2003, 16, 873–880.CrossRefGoogle Scholar
  16. 16.
    Yamauchi, H.; Fowler, B. A. Toxicity and Metabolism of Inorganic and Methylated Arsenicals. In Arsenic in the Environment, Part II: Human Health and Ecosystem Effects; Nriagu, J. O., Ed.; Wiley: New York, 1994; pp 35–43.Google Scholar
  17. 17.
    Goyer, R. A. Toxic Effects of Metals. In Casarett and Doull’s Toxicology: The Basic Science of Poisons, 5th ed.; Klaassen, C. D., Ed.; McGraw-Hill: New York, 1996; pp 696–698.Google Scholar
  18. 18.
    Styblo, M.; Serves, S. V.; Cullen, W. R.; Thomas, D. J. Comparative Inhibition of Yeast Glutathione Reductase by Arsenicals and Arsenothiols. Chem. Res. Toxicol. 1997, 10, 27–33.CrossRefGoogle Scholar
  19. 19.
    Lin, S.; Cullen, W. R.; Thomas, D. J. Methylarsenicals and Arsinothiols are Potent Inhibitors of Mouse Liver Thioredoxin Reductase. Chem. Res. Toxicol. 1999, 12, 924–930.CrossRefGoogle Scholar
  20. 20.
    Petrick, J. S.; Ayala-Fierro, F.; Cullen, W. R.; Carter, D. E.; Aposhian, H. V. Monomethylarsonous Acid (MMAIII) is More Toxic Than Arsenite in Chang Human Hepatocytes. Toxicol. Appl. Pharmacol. 2000, 163, 203–207.CrossRefGoogle Scholar
  21. 21.
    Petrick, J. S.; Bhumasamudram, J.; Mash, E. A.; Aposhian, H. V. Monomethylarsonous Acid (MMAIII) and Arsenite: LD50 in Hamsters and In Vitro Inhibition of Pyruvate Dehydrogenase. Chem. Res. Toxicol. 2001, 14, 651–656.CrossRefGoogle Scholar
  22. 22.
    Mass, M. J.; Tennant, A.; Roop, R. C.; Cullen, W. R.; Styblo, M.; Thomas, D. J.; Kligerman, A. D. Methylated Trivalent Arsenic Species are Genotoxic. Chem. Res. Toxicol. 2001, 14, 355–361.CrossRefGoogle Scholar
  23. 23.
    Loo, J. A. Studying Noncovalent Protein Complexes by Electrospray Ionization Mass Spectrometry. Mass Spectrom. Rev. 1997, 16, 1–23.CrossRefGoogle Scholar
  24. 24.
    Cullen, W. R.; McBride, B. C.; Manji, H.; Pickett, A. W.; Reglinski, J. The Metabolism of Methyarsine Oxide and Sulfide. Appl. Organomet. Chem. 1989, 3, 71–78.CrossRefGoogle Scholar
  25. 25.
    Burrows, G. J.; Turner, E. E. A New Type of Compound Containing Arsenic. J. Chem. Soc. Trans. 1920, 117, 1373–1383.CrossRefGoogle Scholar
  26. 26.
    Protein Data Bank. Website at http://www.rcsb.org/pdb/.Google Scholar
  27. 27.
    von Helden, G.; Hsu, M. T.; Gotts, N. G.; Bowers, M. T. Carbon Cluster Cations with Up to 84 Atoms: Structures, Formation Mechanism, and Reactivity. J. Phys. Chem. 1993, 97, 8182–8192.CrossRefGoogle Scholar
  28. 28.
    Mesleh, M. F.; Hunter, J. M.; Shvartsburg, A. A.; Schatz, G. C.; Jarrold, M. F. Structural Information from Ion Mobility Measurements: Effect of the Long-Range Potential. J. Phys. Chem. 1996, 100, 16082–16086.CrossRefGoogle Scholar
  29. 29.
    Jarrold, M. F. Website at http://nano.chem.indiana.edu/software.html.Google Scholar
  30. 30.
    Yu, X.; Wojciechowski, M.; Fenselau, C. Assessment of Metals in Reconstituted Metallothioneins by Electrospray Mass Spectrometry. Anal. Chem. 1993, 65, 1355–1359.CrossRefGoogle Scholar
  31. 31.
    Le Blanc, J. C. Y. Use of Ionspray Mass Spectrometry in the Speciation and Elemental Characterization of Metallothioneins. J. Anal. At. Spectrom. 1997, 12, 525–530.CrossRefGoogle Scholar
  32. 32.
    Guo, X.; Chan, H. M.; Guevremont, R.; Siu, K. W. M. Analysis of Metallothioneins by Means of Capillary Electrophoresis Coupled to Electrospray Mass Spectrometry with Sheathless Interface. Rapid Commun. Mass Spectrom. 1999, 13, 500–507.CrossRefGoogle Scholar
  33. 33.
    Shelimov, K. B.; Clemmer, D. E.; Hudgins, R. R.; Jarrold, M. F. Protein Structure In Vacuo: Gas-Phase Conformations of BPTI and Cytochrome. c. J. Am. Chem. Soc. 1997, 119, 2240–2248.CrossRefGoogle Scholar
  34. 34.
    Wittmer, D. P.; Chen, Y. H.; Luckenbill, B. K.; Hill, H. H., Jr. Electrospray Ionization Ion Mobility Spectrometry. Anal. Chem. 1994, 66, 2348–2355.CrossRefGoogle Scholar
  35. 35.
    Glusker, J. P. Structural Aspects of Metal Liganding to Functional Groups in Proteins. Adv. Protein Chem. 1991, 42, 1–76.CrossRefGoogle Scholar
  36. 36.
    Li, H.; Siu, K. W. M.; Guevremont, R.; Le Blanc, J. C. Y. Complexes of Silver(I) with Peptides and Proteins as Produced in Electrospray Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1997, 8, 781–792.CrossRefGoogle Scholar
  37. 37.
    Biondi, A. van der Waals Volumes and Radii. J. Phys. Chem. 1964, 68, 441–451.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2005

Authors and Affiliations

  • Yuzhu Guo
    • 1
  • Yun Ling
    • 1
  • Bruce A. Thomson
    • 1
    • 2
  • K. W. Michael Siu
    • 1
  1. 1.Department of Chemistry and Center for Research in Mass SpectrometryYork UniversityTorontoCanada
  2. 2.MDS SCIEXConcordCanada

Personalised recommendations