Advertisement

Improvement of biological time-of-flight-secondary ion mass spectrometry imaging with a bismuth cluster ion source

  • David Touboul
  • Felix Kollmer
  • Ewald Niehuis
  • Alain BrunelleEmail author
  • Olivier Laprévote
Articles

Abstract

A new liquid metal ion gun (LMIG) filled with bismuth has been fitted to a time-of-flight—secondary ion mass spectrometer (TOF-SIMS). This source provides beams of Bi n q+ clusters with n = 1–7 and q = 1 and 2. The appropriate clusters have much better intensities and efficiencies than the Au 3 + gold clusters recently used in TOF-SIMS imaging, and allow better lateral and mass resolution. The different beams delivered by this ion source have been tested for biological imaging of rat brain sections. The results show a great improvement of the imaging capabilities in terms of accessible mass range and useful lateral resolution. Secondary ion yields Y, disappearance cross sections σ, efficiencies E = Y/σ;, and useful lateral resolutions ΔL have been compared using the different bismuth clusters, directly onto the surface of rat brain sections and for several positive and negative secondary ions with m/z ranging from 23 up to more than 750. The efficiency and the imaging capabilities of the different primary ions are compared by taking into account the primary ion current for reasonable acquisition times. The two best primary ions are Bi 3 + and Bi 5 2+ . The Bi 3 + ion beam has a current at least five times larger than Au 3 + and therefore is an excellent beam for large-area imaging. Bi 5 2+ ions exhibit large secondary ions yields and a reasonable intensity making them suitable for small-area images with an excellent sensitivity and a possible useful lateral resolution <400 nm.

Keywords

Lateral Resolution Gold Cluster Bismuth Cluster Phosphocholine Head Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Caprioli, R. M.; Farmer, T. B.; Gile J. Molecular Imaging of Biological Samples: Localization of Peptides and Proteins Using MALDI-TOF MS. Anal. Chem. 1997, 69, 4751–4760.CrossRefGoogle Scholar
  2. 2.
    Chaurand, P.; Schwartz, S. A.; Caprioli R. M. Profiling and Imaging Proteins in Tissue Sections by MS. Anal. Chem. 2004, 76, 87A-93A.Google Scholar
  3. 3.
    Spengler, B.; Hubert M. Scanning Microprobe Matrix-Assisted Laser Desorption Ionization (SMALDI) Mass Spectrometry: Instrumentation for Sub-Micrometer Resolved LDI and MALDI Surface Analysis. J. Am. Soc. Mass Spectrom 2002, 13, 735–748.CrossRefGoogle Scholar
  4. 4.
    Stoeckli, M.; Staab, D.; Staufenbiel, M.; Wiederhold, K. H.; Signor L. Molecular Imaging of Amyloid β Peptides in Mouse Brain Sections Using Mass Spectrometry. Anal. Biochem. 2002, 311, 33–39.CrossRefGoogle Scholar
  5. 5.
    Rubakhin, S. V.; Greenough, W. T.; Sweedler J. V. Spatial Profiling with MALDI MS: Distribution of Neuropeptides within Single Neurons. Anal. Chem. 2003, 75, 5374–5380.CrossRefGoogle Scholar
  6. 6.
    Piyadasa, G.; McNabb, J. R.; Spicer, V.; Standing, K. G.; Ens W. Imaging MALDI with an Orthogonal TOF Mass Spectrometer. Proceedings of the 52ndASMS Conference on Mass Spectrometry and Allied Topics; Nashville, TN, May 23–27, 2004.Google Scholar
  7. 7.
    Touboul, D.; Piednoël, H.; Voisin, V.; De La Porte, S.; Brunelle, A.; Halgand, F.; Laprévote O. Changes of Phospholipid Composition within Dystrophic Muscle by MALDI-TOF-Mass Spectrometry and Mass Spectrometry-Imaging. Eur. J. Mass Spectrom 2004, 10, 657–664.CrossRefGoogle Scholar
  8. 8.
    Reyzer, M. L.; Hsieh, Y.; Ng, K.; Korfmacher, W. A.; Caprioli R. M. Direct Analysis of Drug Candidates in Tissue by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. J. Mass Spectrom 2003, 38, 1081–1092.CrossRefGoogle Scholar
  9. 9.
    Belu, A. M.; Graham, D. J.; Castner D. G. Time-of-flight Secondary Ion Mass Spectrometry: Techniques and Applications for the Characterization of Biomaterial Surfaces. Biomaterials 2003, 24, 3635–3653.CrossRefGoogle Scholar
  10. 10.
    Pacholski, M. L.; Winograd N. Imaging with Mass Spectrometry. Chem. Rev. 1999, 99, 2977–3005.CrossRefGoogle Scholar
  11. 11.
    TOF SIMS: Surface Analysis by Mass Spectrometry; Vickerman, J.C.; Briggs, D., Eds.; IM Publications and Surface Spectra Ltd.: Manchester, UK, 2001.Google Scholar
  12. 12.
    Todd, P. J.; Schaaff, T. G.; Chaurand, P.; Caprioli R. M. Organic Ion Imaging of Biological Tissue with Secondary Ion Mass Spectrometry and Matrix-Assisted Laser Desorption/Ionization. J. Mass Spectrom 2001, 36, 355–369.CrossRefGoogle Scholar
  13. 13.
    Roddy, T. P.; Cannon, D. M., Jr. Meserole, C. A.; Winograd, N.; Ewing A. G. Imaging of Freeze-Fractured Cells with in situ Fluorescence and Time-of-Flight Secondary Ion Mass Spectrometry. Anal. Chem. 2002, 74, 4011–4019.CrossRefGoogle Scholar
  14. 14.
    Benguerba, M.; Brunelle, A.; Della-Negra, S.; Depauw, J.; Joret, H.; Le Beyec, Y.; Blain, M. G.; Schweikert, E. A.; Ben Assayag, G.; Sudraud P. Impact of Slow Gold Cluster on Various Solids: Nonlinear Effects in Secondary Ion Emission. Nucl. Instrum. Methods Phys. Res. B 1991, 62, 8–22.CrossRefGoogle Scholar
  15. 15.
    Touboul, D.; Halgand, F.; Brunelle, A.; Kersting, R.; Tallarek, E.; Hagenhoff, B.; Laprévote O. Tissue Molecular Ion Imaging by Gold Cluster Ion Bombardment. Anal. Chem. 2004, 76, 1550–1159.CrossRefGoogle Scholar
  16. 16.
    Sjövall, P.; Jausmaa, J.; Johansson B. Mass Spectrometric Imaging of Lipids in Brain Tissue. Anal. Chem. 2004, 76, 4271–4278.CrossRefGoogle Scholar
  17. 17.
    Touboul, D.; Brunelle, A.; Halgand, F.; De La Porte, S.; Laprévote O. Lipid Imaging by Gold Cluster Time-of-Flight-Secondary Ion Mass Spectrometry: Application to Duchenne Muscular Dystrophy. J. Lipid Res. 2005, 46, 1388–1395.CrossRefGoogle Scholar
  18. 18.
    Maarten Altelaar, A. F.; van Minnen, J.; Jiménez, C. R.; Heeren, R. M. A.; Piersma S. R. Direct Molecular Imaging of Lymnaea stagnalis Nervous Tissue at Subcellular Spatial Resolution by Mass Spectrometry. Anal. Chem. 2005, 77, 735–741.CrossRefGoogle Scholar
  19. 19.
    McDonnel, L.; Piersma, S. R.; Maarten Altelaar, A. F.; Mize, T. H.; Luxembourg, S. L.; Verhaert, P. D. E. M.; van Minnen, J.; Heeren R. M. A. Subcellular Imaging Mass Spectrometry of Brain Tissue. J. Mass Spectrom 2005, 40, 160–168.CrossRefGoogle Scholar
  20. 20.
    Nygren, H.; Malmberg, P.; Kriegeskotte, Ch.; Arlinghaus H. F. Bioimaging TOF-SIMS: Localization of Cholesterol in Rat Kidney Sections. FEBS Lett. 2004, 566, 291–293.CrossRefGoogle Scholar
  21. 21.
    Kollmer F. Cluster Primary Ion Bombardment of Organic Materials. Appl. Surf. Sci. 2004, 231-232, 153–158.CrossRefGoogle Scholar
  22. 22.
    TOF-SIMS IV product description—Sept. 2002, ION-TOF GmbH, Mendelstr. 11, 48149 Muenster, Germany.Google Scholar
  23. 23.
    Sodhi R. N. S. Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS): Versatility in Chemical and Imaging Surface Analysis. Analyst 2004, 129, 483–487.CrossRefGoogle Scholar
  24. 24.
    Kötter, F.; Benninghoven A. Secondary Ion Emission From Polymer Surfaces Under Ar+, Xe+ and SF5+ Ion Bombardment. Appl. Surf. Sci. 1998, 133, 47–57.CrossRefGoogle Scholar
  25. 25.
    Standing, K. G.; Chait, B. T.; Ens, W.; McIntosh, G.; Beavis R. Time-of-Flight Measurements of Secondary Organic Ions Produced by 1 keV to 16 keV Primary Ions. Nucl. Instrum. Methods Phys. Res. 1982, 198, 33–38.CrossRefGoogle Scholar
  26. 26.
    Ziegler, J. F.; Biersack, J. P.; Littmark H. The Stopping and Ranges of Ions in Solids; Pergamon Press: New York, 1985 (available at: www.srim.org).Google Scholar
  27. 27.
    Nagy, G.; Gelb, L. D.; Walker A. V. An Investigation of Enhanced Secondary Ion Emission under Aun+ (n = 1–7) Bombardment. J. Am. Soc. Mass Spectrom. 2005, 16, 733–742.CrossRefGoogle Scholar
  28. 28.
    Brunelle, A.; Della-Negra, S.; Depauw, J.; Jacquet, D.; Le Beyec, Y.; Pautrat, M.; Baudin, K.; Andersen H. H. Enhanced Secondary-Ion Emission under Gold-Cluster Bombardment With Energies From keV to MeV per Atom. Phys. Rev. A 2001, 63, 022902 1–10.CrossRefGoogle Scholar
  29. 29.
    Gilmore, I. S.; Seah M. P. Electron Flood Gun Damage in the Analysis of Polymers and Organics in Time-of-Flight SIMS. Appl. Surf. Sci. 2002, 187, 89–100.CrossRefGoogle Scholar
  30. 30.
    Paxinos, G.; Ch. Watson C. H. The Rat Brain in Stereotaxic Coordinates, 4th ed. Academic Press: London, 1998.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2005

Authors and Affiliations

  • David Touboul
    • 1
  • Felix Kollmer
    • 2
  • Ewald Niehuis
    • 2
  • Alain Brunelle
    • 3
    Email author
  • Olivier Laprévote
    • 3
  1. 1.Institut de Chimie des Substances NaturellesCNRSGif-sur-Yvette CedexFrance
  2. 2.ION-TOF GmbHMünsterGermany
  3. 3.Institut de Chimie des Substances NaturellesCNRSGif-sur-Yvette CedexFrance

Personalised recommendations