Journal of the American Society for Mass Spectrometry

, Volume 16, Issue 9, pp 1481–1487 | Cite as

Clear evidence of fluorescence resonance energy transfer in gas-phase ions

  • Maxim Dashtiev
  • Vladimir Azov
  • Vladimir Frankevich
  • Ludwig Scharfenberg
  • Renato Zenobi
Articles

Abstract

Fluorescence resonance energy transfer (FRET) is a distance-sensitive method that correlates changes in fluorescence intensity with conformational changes, for example, of biomolecules in the cellular environment. Applied to the gas phase in combination with Fourier transform ion cyclotron resonance mass spectrometry, it opens up possibilities to define structural/conformational properties of molecular ions, in the absence of solvent, and without the need for purification of the sample. For successfully observing FRET in the gas phase it is important to find suitable fluorophores. In this study several fluorescent dyes were examined, and the correlation between solution-phase and gas-phase fluorescence data were studied. For the first time, FRET in the gas phase is demonstrated unambiguously.

References

  1. 1.
    Karas, M.; Bachmann, D.; Bahr, U.; Hillenkamp, F. Matrix-Assisted Ultraviolet Laser Desorption of Non-Volatile Compounds. Int. J. Mass Spectrom. Ion Process. 1987, 78, 53–68.CrossRefGoogle Scholar
  2. 2.
    Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray Ionization for Mass Spectrometry of Large Biomolecules. Science 1989, 246, 64–71.CrossRefGoogle Scholar
  3. 3.
    Dunbar, R. C. BIRD (Blackbody Infrared Radiative Dissociation): Evolution, Principles, and Applications. Mass Spectrom. Rev. 2004, 23, 127–158.CrossRefGoogle Scholar
  4. 4.
    Burlingame, A. L.; McCloskey, J. A. Biological Mass Spectrometry; Elsevier: Amsterdam, 1990; p 179.Google Scholar
  5. 5.
    Engen, J. R.; Smith, D. L. Investigating Protein Structure and Dynamics by Hydrogen Exchange MS. Anal. Chem. 2001, 73, 256A-265A.CrossRefGoogle Scholar
  6. 6.
    Friess, S. D.; Zenobi, R. Protein Structure Information From Mass Spectrometry? Selective Titration of Arginine Residues by Sulfonates. J. Am. Soc. Mass Spectrom. 2001, 12, 810–818.CrossRefGoogle Scholar
  7. 7.
    Sharp, J. S.; Becker, J. M.; Hettich, R. L. Analysis of Protein Solvent Accessible Surfaces by Photochemical Oxidation and Mass Spectrometry. Anal. Chem. 2004, 76, 672–683.CrossRefGoogle Scholar
  8. 8.
    Shelimov, K. B.; Clemmer, D. E.; Hudgins, R. R.; Jarrold, M. F. Protein Structure In Vacuo: Gas-Phase Conformations of BPTI and Cytochrome c. J. Am. Chem. Soc. 1997, 119, 2240–2248.CrossRefGoogle Scholar
  9. 9.
    Oomens, J.; Polfer, N.; Moore, D. T.; van der Meer, L.; Marshall, A. G.; Eyler, J. R.; Meijer, G.; von Helden, G. Charge-State Resolved Mid-Infrared Spectroscopy of a Gas-Phase Protein. Phys. Chem. Chem. Phys. 2005, 7, 1345–1348.CrossRefGoogle Scholar
  10. 10.
    Oh, H.; Lin, C.; Hwang, H. Y.; Zhai, H.; Breuker, K.; Zabrouskov, V.; Carpenter, B. K.; McLafferty, F. W. Infrared Photodissociation Spectroscopy of Electrosprayed Ions in a Fourier Transform Mass Spectrometer. J. Am. Chem. Soc. 2005, 127, 4076–4083.CrossRefGoogle Scholar
  11. 11.
    Wang, Y.; Hendrickson, C. L.; Marshall, A. G. Direct Optical Spectroscopy of Gas-Phase Molecular Ions Trapped and Mass Selected by Ion Cyclotron Resonance: Laser-Induced Fluorescence Excitation Spectrum of Hexafluorobenzene (C6F6+). Chem. Phys. Lett. 2001, 334, 69–75.CrossRefGoogle Scholar
  12. 12.
    Cage, B.; McFarland, M. A.; Hendrickson, C. L.; Dalal, N. S.; Marshall, A. G. Resolution of Individual Component Fluorescence Lifetimes From a Mixture of Trapped Ions by Laser-Induced Fluorescence/Ion Cyclotron Resonance. J. Phys. Chem. A. 2002, 106, 10033–10036.CrossRefGoogle Scholar
  13. 13.
    Friedrich, J.; Fu, J.; Hendrickson, C. L.; Wang, Y.; Marshall, A. G. Time Resolved Laser Induced Fluorescence of Electrosprayed Ions Confined in a Linear Quadrupole Trap. Rev. Sci. Instrum. 2004, 75, 4511–4515.CrossRefGoogle Scholar
  14. 14.
    Scott, J. R.; Tremblay, P. L.; Durham, B.; Ham, J. E. Design of a Fluorescence Lifetime Detection System for Ions Trapped in a Fourier Transform Mass Spectrometer. Proceedings of the 49th Annual ASMS Conference on Mass Spectrometry and Allied Topics; Chicago, IL, June 2001.Google Scholar
  15. 15.
    Wright, K. Ph.D dissertation, University of British Columbia, 2003.Google Scholar
  16. 16.
    Stryer, L. Fluorescence resonance energy transfer as a spectroscopic ruler. Ann. Rev. Biochem. 1978, 47, 819–846.CrossRefGoogle Scholar
  17. 17.
    Valeur, B. Molecular Fluorescence; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2001; p 247.CrossRefGoogle Scholar
  18. 18.
    Wu, P. G.; Brand, L. Resonance Energy Transfer: Methods and Applications. Anal. Biochem. 1994, 218, 1–13.CrossRefGoogle Scholar
  19. 19.
    Danell, A. S.; Parks, J. H. FRET. Measurements of Trapped Oligonucleotide Duplexes. Int. J. Mass Spectrom. 2003, 229, 35–45.CrossRefGoogle Scholar
  20. 20.
    Danell, A. S.; Parks, J. H. Fraying and Electron Autodetachment Dynamics of Trapped Gas Phase Oligonucleotides. J. Am. Soc. Mass Spectrom. 2003, 14, 1330–1339.CrossRefGoogle Scholar
  21. 21.
    Adamczyk, M.; Grote, J. Synthesis of Probes With Broad pH Range Fluorescence. Bioorg. Med. Chem. Lett. 2003, 13, 2327–2330.CrossRefGoogle Scholar
  22. 22.
    Brackmann, U. Lambdachrome Laser Dyes; Lambda Physik GmbH: Goettingen, Germany, 1986.Google Scholar
  23. 23.
    www.probes.comGoogle Scholar
  24. 24.
    Frankevich, V.; Guan, X.; Dashtiev, M.; Zenobi, R. Laser Induced Fluorescence of Trapped Gas-Phase Molecular Ions Generated by Internal Source MALDI in an FTICR Mass Spectrometer. Eur. J. Mass Spectrom. (EFTMS-7 special issue), Available at http://www.impub.co.uk/abs/W374.html.Google Scholar
  25. 25.
    Guan, S.; Kim, H. S.; Wahl, M. C.; Wood, T. D.; Xiang, X.; Marshall, A. G. Shrink-Wrapping an Ion Cloud for High Performance Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Chem. Rev. 1994, 94, 2161–2182.CrossRefGoogle Scholar
  26. 26.
    Azov, V. A.; Diederich, F.; Lill, Y.; Hecht, B. Synthesis and Conformational Switching of Partially and Differentially Bridged Resorcin Arenes Bearing Fluorescent Dye Labels. Preliminary Communication. Helv. Chim. Acta. 2003, 86, 2149–2155.CrossRefGoogle Scholar
  27. 27.
    Azov, V. A.; Skinner, P. J.; Yamakoshi, Y.; Seiler, P.; Gramlich, P.; Diederich, F. Functionalized and Partially or Differentially Bridged Resorcin Arene Cavitands: Synthesis and Solid-State Structures. Helv. Chim. Acta. 2003, 86, 3648–3670.CrossRefGoogle Scholar
  28. 28.
    Azov, V. A.; Jaun, B.; Diederich, F. NMR Investigations into the Vase-Kite Conformational Switching of Resorcin Arene Cavitands. Helv. Chim. Acta. 2004, 87, 449–462.CrossRefGoogle Scholar
  29. 29.
    Wright, K. C.; Blades, M. W. Fluorescence Emission Spectroscopy of Trapped Molecular Ions. Presented at the 51st Annual ASMS Conference on Mass Spectrometry and Allied Topics, Montreal, Canada, June, 2003.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2005

Authors and Affiliations

  • Maxim Dashtiev
    • 1
  • Vladimir Azov
    • 1
  • Vladimir Frankevich
    • 1
  • Ludwig Scharfenberg
    • 1
  • Renato Zenobi
    • 1
  1. 1.Department of Chemistry, ETH HonggerbergSwiss Federal Institute of TechnologyZurichSwitzerland

Personalised recommendations