Journal of the American Society for Mass Spectrometry

, Volume 16, Issue 9, pp 1427–1437

Multidimensional separations of ubiquitin conformers in the gas phase: Relating ion cross sections to H/D exchange measurements

Articles

Abstract

Investigating gas-phase structures of protein ions can lead to an improved understanding of intramolecular forces that play an important role in protein folding. Both hydrogen/deuterium (H/D) exchange and ion mobility spectrometry provide insight into the structures and stabilities of different gas-phase conformers, but how best to relate the results from these two methods has been hotly debated. Here, high-field asymmetric waveform ion mobility spectrometry (FAIMS) is combined with Fourier-transform ion cyclotron resonance mass spectrometry (FT/ICR MS) and is used to directly relate ubiquitin ion cross sections and H/D exchange extents. Multiple conformers can be identified using both methods. For the 9+ charge state of ubiquitin, two conformers (or unresolved populations of conformers) that have cross sections differing by 10% are resolved by FAIMS, but only one conformer is apparent using H/D exchange at short times. For the 12+ charge state, two conformers (or conformer populations) have cross sections differing by <1%, yet H/D exchange of these conformers differ significantly (6 versus 25 exchanges). These and other results show that ubiquitin ion collisional cross sections and H/D exchange distributions are not strongly correlated and that factors other than surface accessibility appear to play a significant role in determining rates and extents of H/D exchange. Conformers that are not resolved by one method could be resolved by the other, indicating that these two methods are highly complementary and that more conformations can be resolved with this combination of methods than by either method alone.

References

  1. 1.(a)
    Onuchic, J. N.; LutheySchulten, Z.; Wolynes, P. G. Theory of Protein Folding: The Energy Landscape Perspective. Annu. Rev. Phys. Chem. 1997, 48, 545–600.CrossRefGoogle Scholar
  2. 1.(b)
    Onuchic, J. N.; Wolynes, P. G. Theory of Protein Folding. Curr. Opin. Struct. Biol. 2004, 14, 70–75.CrossRefGoogle Scholar
  3. 1.(c)
    Kubelka, J.; Hofrichter, J.; Eaton, E. A. The Protein Folding “Speel Limit”. Curr. Opin. Struct. Biol. 2004, 14, 76–88.CrossRefGoogle Scholar
  4. 2.
    Jarrold, M. F. Peptides and Proteins in the Vapor Phase. Ann. Rev. Phys. Chem. 2000, 51, 179–207.CrossRefGoogle Scholar
  5. 3.(a)
    Suckau, D.; Shi, Y.; Beu, S. C.; Senko, M. W.; Quinn, J. P.; Wampler, F. M.; McLafferty, F. W. Coexisting Stable Conformations of Gaseous Protein Ions. Proc. Natl. Acad. Sci. U. S. A. 1993, 90, 790–793.CrossRefGoogle Scholar
  6. 3.(b)
    McLafferty, F. W.; Guan, Z.; Haupts, U.; Wood, T. D.; Kelleher, N. L. Gaseous Conformational Structures of Cytochrome. c. J. Am. Chem. Soc. 1998, 120, 4732–4740.CrossRefGoogle Scholar
  7. 3.(c)
    Wood, T. D.; Chorush, R. A.; Wampler, F. M.; Little, D. P.; O’Connor, P. B.; McLafferty, F. W. Gas-Phase Folding and Unfolding of Cytochrome c Cations. Proc. Natl. Acad. Sci. U. S. A. 1995, 92, 2451–2454.CrossRefGoogle Scholar
  8. 4.
    Freitas, M. A.; Hendrickson, C. L.; Emmett, M. R.; Marshall, A. G. Gas-Phase Bovine Ubiquitin Cation Conformations Resolved by Gas-Phase Hydrogen/Deuterium Exchange Rate and Extent. Int. J. Mass Spectrom 1999, 185/186/187, 565–575.Google Scholar
  9. 5.
    Winger, B. E.; Light-Wahl, K. J.; Rockwood, A. L.; Smith, R. D. Probing Qualitative Conformation Differences of Multiply Protonated Gas-Phase Proteins via H/D Isotopic Exchange with D2O. J. Am. Chem. Soc. 1992, 114, 5897–5898.CrossRefGoogle Scholar
  10. 6.(a)
    Geller, O.; Lifshitz, C. A Fast Flow Tube Study of Gas-Phase H/D Exchange of Multiply Protonated Ubiquitin. J. Phys. Chem. A 2005, 109, 2217–2222.CrossRefGoogle Scholar
  11. 6.(b)
    Evans, S. E.; Lueck, N.; Marzluff, E. M. Gas-Phase Hydrogen/Deuterium Exchange of Proteins in an Ion Trap Mass Spectrometer. Int. J. Mass Spectrom 2003, 222, 175–187.CrossRefGoogle Scholar
  12. 6.(c)
    Geller, O.; Lifshitz, C. Hydrogen/Deuterium Exchange Kinetics of Cytochrome c: An Electrospray Ionization Fast Flow Experiment. Isr. J. Chem. 2003, 43, 347–352.CrossRefGoogle Scholar
  13. 6.(d)
    Valentine, A. E.; Clemmer, D. E. Temperature-Dependent H/D Exchange of Compact and Elongated Cytochrome c Ions in the Gas Phase. J. Am. Soc. Mass Spectrom 2002, 13, 506–517.CrossRefGoogle Scholar
  14. 6.(e)
    Wang, F.; Freitas, M. A.; Marshall, A. G.; Sykes, B. D. Gas-Phase Memory of Solution-Phase Protein Conformation: H/D Exchange and Fourier Transform Ion Cyclotron Resonance Mass Spectrometry of the N-Terminal Domain of Cardiac Troponin. c. Int. J. Mass Spectrom. 1999, 192, 319–325.CrossRefGoogle Scholar
  15. 6.(f)
    Wagner, D. S.; Anderegg, R. J. Conformation of Cytochrome c Studied by Deuterium Exchange Electrospray Ionization Mass Spectrometry. Anal. Chem. 1994, 66, 706–711.CrossRefGoogle Scholar
  16. 7.(a)
    Clemmer, D. E.; Hudgins, R. R.; Jarrold, M. F. Naked Protein Conformations—Cytochrome c in the Gas Phase. J. Am. Chem. Soc. 1995, 117, 10141–10142.CrossRefGoogle Scholar
  17. 7.(b)
    Hudgins, R. R.; Woenckhaus, J.; Jarrold, M. F. High Resolution Ion Mobility Measurements for Gas-Phase Proteins: Correlation Between Solution-Phase and Gas-Phase Conformations. Int. J. Mass Spectrom 1997, 165, 497–507.CrossRefGoogle Scholar
  18. 8.(a)
    Wyttenbach, T.; vonHelden, G.; Bowers, M. T. Gas-Phase Conformation of Biological Molecules: Bradykinin. J. Am. Chem. Soc. 1996, 118, 8355–8364.CrossRefGoogle Scholar
  19. 8.(b)
    Wyttenbach, T.; Kemper, P. R.; Bowers, M. T.. Int. J. Mass Spectrom. 2002, 212, 13.Google Scholar
  20. 9.(a)
    Badman, E. R.; Hoaglund-Hyzer, C. S.; Clemmer, D. E. Monitoring Structural Changes of Proteins in an Ion Trap Over ∼10 to 200 ms: Unfolding Transitions in Cytochrome c Ions. Anal. Chem. 2001, 73, 6000–6007.CrossRefGoogle Scholar
  21. 9.(b)
    Myung, S.; Badman, E. R.; Lee, Y. J.; Clemmer, D. E. Structural Transitions of Electrosprayed Ubiquitin Ions Stored in an Ion Trap over ∼10 ms to 30 s.. J. Phys. Chem. A 2002, 106, 9976–9982.CrossRefGoogle Scholar
  22. 9.(c)
    Li, J.; Taraszka, J. A.; Counterman, A. E.; Clemmer, D. E. Influence of Solvent Composition and Capillary Temperature on the Conformations of Electrosprayed Ions: Unfolding of Conpact Ubiquitin Conformers from Pseudonative and Denatured Solutions. Int. J. Mass Spectrom. 1999, 185/186/187, 37–47.Google Scholar
  23. 9.(d)
    Valentine, S. J.; Anderson, J. G.; Ellington, A. D.; Clemmer, D. E. Disulfide-Intact and -Reduced Lysozyme in the Gas Phase: Conformations and Pathways of Folding and Unfolding. J. Phys. Chem. B 1997, 101, 3891–3900.CrossRefGoogle Scholar
  24. 10.(a)
    Gross, D. S.; Schnier, P. D.; Rodriguez-Cruz, S. E.; Fagerquist, C. K.; Williams, E. R. Conformations and Folding of Lysozyme Ions in Vacuo. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 3143–3148.CrossRefGoogle Scholar
  25. 10.(b)
    Zhang, X.; Cassady, C. J. Apparent Gas-Phase Acidities of Multiply Protonated Peptide Ions: Ubiquitin, Insulin B, and Renin Substrate. J. Am. Soc. Mass Spectrom. 7, 93, 1211–1218.Google Scholar
  26. 10.(c)
    Valentine, S. J.; Counterman, A. E.; Clemmer, D. E. Conformer-Dependent Proton Transfer Reactions of Ubquitin Ions. J. Am. Soc. Mass. Spectrom. 1997, 8, 954–961.CrossRefGoogle Scholar
  27. 10.(d)
    Loo, R. R. O.; Loo, J. A.; Udseth, H. R.; Fulton, J. L.; Smith, R. D. Protein Structural Effects in Gas-Phase Ion Molecule Reactions with Diethylamine. Rapid Commun. Mass Spectrom. 1992, 6, 159–165.CrossRefGoogle Scholar
  28. 11.(a)
    Reimann, C. T.; Sullivan, P. A.; Axelsson, J.; Quist, A. P.; Altmann, S.; Roepstorff, P.; Velazquez, I.; Tapia, O. Conformation of Highly-Charged Gas-Phase Lysozyme Revealed by Energetic Surface Imprinting. J. Am. Chem. Soc. 1998, 120, 7608–7616.CrossRefGoogle Scholar
  29. 11.(b)
    Sullivan, P. A.; Axelsson, J.; Altmann, S.; Quist, A. P.; Sunqvist, B. U. R.; Reimann, C. T. Defect Formation on Surfaces Bombarded by Energetic Multiply Charged Proteins: Implications for the Conformation of Gas-Phase Electrosprayed Ions. J. Am. Soc. Mass Spectrom. 1996, 7, 329–341.CrossRefGoogle Scholar
  30. 12.(a)
    Arteca, G. A.; Reimann, C. T.; Tapia, O. Proteins in Vacuo: Denaturing and Folding Mechanisms Studied with Computer-Simulated Molecular Dynamics. Mass Spectrom. Rev. 2001, 20, 402–422.CrossRefGoogle Scholar
  31. 12.(b)
    Mao, Y.; Ratner, M. A.; Jarrold, M. F. Molecular Dynamics Simulations of the Charge-Induced Unfolding and Refolding of Unsolvated Cytochrome. c. J. Phys. Chem. B 1999, 103, 10017–10021.CrossRefGoogle Scholar
  32. 12.(c)
    Liu, D. F.; Wyttenbach, T.; Carpenter, C. J.; Bowers, M. T. Investigation of Noncovalent Interactions in Deprotonated Peptides: Structural and Energetic Competition Between Aggregation and Hydration. J. Am. Chem. Soc. 2004, 126, 3261–3270.CrossRefGoogle Scholar
  33. 13.(a)
    Covey, T.; Douglas, D. J. Collision Cross-Sections for Protein Ions. J. Am. Soc. Mass Spectrom. 1993, 4, 616–623.CrossRefGoogle Scholar
  34. 13.(b)
    Cox, K. A.; Julian, R. K.; Cooks, R. G.; Kaiser, R. E. Conformer Selection of Protein Ions by Ion Mobility in a Triple Quadrupole Mass-Spectrometer. J. Am. Soc. Mass Spectrom. 1994, 5, 127–136.CrossRefGoogle Scholar
  35. 13.(c)
    Moradian, A.; Scalf, M.; Westphall, M. S.; Smith, L. M.; Douglas, D. J. Collision Cross-Sections of Gas-Phase DNA Ions. Int. J. Mass Spectrom. 2002, 219, 161–170.CrossRefGoogle Scholar
  36. 14.
    Purves, R. W.; Barnett, D. A.; Ells, B.; Guevremont, R. Investigation of Bovine Ubiquitin Conformers Separated by High-Field Asymmetric Waveform Ion Mobility Spectrometry: Cross Section Measurements Using Energy-Loss Experiments with a Triple Quadrupole Mass Spectrometer. J. Am. Soc. Mass Spectrom. 2000, 11, 738–745.CrossRefGoogle Scholar
  37. 15.(a)
    Wu, G. Y.; Van Orden, S.; Cheng, X. H.; Bakhtiar, R.; Smith, R. D. Characterization of Cytochrome-c Variants with High-Resolution FT/ICR Mass Spectrometry—Correlation of Fragmentation and Structure. Anal. Chem. 1995, 67, 2498–2509.CrossRefGoogle Scholar
  38. 15.(b)
    Cassady, C. J.; Carr, S. R. Elucidation of Isomeric Structures for Ubiquitin [M+12H] (12+) Ions Produced by Electrospray Ionization Mass Spectrometry. J. Mass Spectrom. 1996, 31, 247–254.CrossRefGoogle Scholar
  39. 15.(c)
    Kaltashov, I. A.; Fenselau, C. Stability of Secondary Structural Elements in a Solvent-Free Environment: The Alpha Helix. Proteins: Struct., Funct., Genet. 1997, 27, 165–170.CrossRefGoogle Scholar
  40. 15.(d)
    Breuker, K.; Oh, H.; Horn, D. M.; Cerda, B. A.; McLafferty, F. W. Detailed Unfolding and Folding of Gaseous Ubiquitin Ions Characterized by Electron Capture Dissociation. J. Am. Chem. Soc. 2002, 124, 6407–6420.CrossRefGoogle Scholar
  41. 15.(e)
    Badman, E. R.; Myung, S.; Clemmer, D. E. Dissociation of Different Conformations of Ubquitin Ions. J. Am. Soc. Mass Spectrom. 2002, 13, 719–723.CrossRefGoogle Scholar
  42. 15.(f)
    Van Den Bremer, E. T. J.; Jiskoot, W.; James, R.; Moore, G. R.; Kleanthous, C.; Heck, A. J. R.; Maier, C. S. Probing Metal Ion Binding and Conformational Properties of the Colicin E9 Endonuclease by Electrospray Time-of-Flight Mass Ionization Spectrometry. Protein Sci. 2002, 11, 1738–1752.CrossRefGoogle Scholar
  43. 15.(g)
    Oh, H.; Breuker, K.; Sze, S. K.; Ge, Y.; Carpenter, B. K.; McLafferty, F. W. Secondary and Tertiary Structures of Gaseous Protein Ions Characterized by Electron Capture Dissociation Mass Spectrometry and Photofragment Spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 15863–15868.CrossRefGoogle Scholar
  44. 16.(a)
    Jurchen, J. C.; Cooper, R. E.; Williams, E. R. The Role of Acidic Residues and of Sodium Ion Adduction on the Gas-Phase H/D Exchange of Peptides and Peptide Dimers. J. Am. Soc. Mass Spectrom. 2003, 14, 1477–1487.CrossRefGoogle Scholar
  45. 16.(b)
    Cox, H. A.; Julian, R. R.; Sang-Won, L.; Beauchamp, J. L. Gas-Phase H/D exchange of Sodiated Glycine Oligomers with ND3: Exchange Kinetics Do Not Reflect Parent Ion Structures. J. Am. Chem. Soc. 2004, 126, 6485–6490.CrossRefGoogle Scholar
  46. 16.(c)
    Freitas, M. A.; Marshall, A. G. Rate and Extent of Gas-Phase Hydrogen/Deuterium Exchange of Bradykinins: Evidence for Peptide Zwitterions in the Gas Phase. Int. J. Mass Spectrom. 1999, 183, 221–231.CrossRefGoogle Scholar
  47. 17.(a)
    Bowers, M. T.; Kemper, P. R.; von Helden, G.; van Koppen, P. A. M. Gas-Phase Ion Chromatography-Transition-Metal State Selection and Carbon Cluster Formation. Science 1993, 260, 1446–1451.CrossRefGoogle Scholar
  48. 17.(b)
    Clemmer, D. E.; Jarrold, M. F. Ion Mobility Measurements and Their Applications to Clusters and Biomolecules. J. Mass Spectrom. 1997, 32, 577–592.CrossRefGoogle Scholar
  49. 18.
    Valentine, S. J.; Clemmer, D. E. H/D Exchange Levels of Shape-Resolved Cytochrome c Conformers in the Gas Phase. J. Am. Chem. Soc. 1997, 119, 3558–3566.CrossRefGoogle Scholar
  50. 19.(a)
    Buryakov, I. A.; Krylov, E. V.; Nazarov, E. G.; Rasulev, U. K. A New Method of Separation of Multi-Atomic Ions by Mobility at Atmospheric Pressure Using a High-Frequency Amplitude-Asymmetric Strong Electric Field. Int. J. Mass Spectrom. Ion Processes 1993, 128, 143–148.CrossRefGoogle Scholar
  51. 19.(b)
    Buryakov, I. A.; Krylov, E. V.; Makas, A. L.; Nazarov, E. G.; Pervukhin, V. V.; Rasulev, U. K. Separation of Ions According to Mobility in Strong AC Fields. Sov. Tech. Phys. Lett. 1991, 17, 446–447.Google Scholar
  52. 20.(a)
    Purves, R. W.; Barnett, D. A.; Guevremont, R. Separation of Protein Conformers Using Electrospray-High Field Asymmetric Waveform Ion Mobility Spectrometry-Mass Spectrometry. Int. J. Mass Spectrom. 2000, 197, 163–177.CrossRefGoogle Scholar
  53. 20.(b)
    Purves, R. W.; Barnett, D. A.; Ells, B.; Guevremont, R. Elongated Conformers of the charge states +11 to +15 of Bovine Ubiquitin Studied using ESI-FAIMS-MS. J. Am. Soc. Mass Spectrom. 2001, 12, 894–901.CrossRefGoogle Scholar
  54. 20.(c)
    Purves, R. W.; Barnett, D. A.; Ells, B.; Guevremont, R. Gas-Phase Conformations of the [M + 2H]++ Ion of Bradykinin Investigated by Combining High-Field Asymmetric Waveform Ion Mobility Spectrometry, Hydrogen/Deuterium Exchange, and Energy-Loss Measurements. Rapid Commun. Mass Spectrom. 2001, 15, 1453–1456.CrossRefGoogle Scholar
  55. 20.(d)
    Borysik, A. J. H.; Read, P.; Little, D. R.; Bateman, R. H.; Radford, S. E.; Ashcroft, A. E. Separation of β2-Microglobulin Conformers by High-Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) Coupled to Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2004, 18, 2229–2234.CrossRefGoogle Scholar
  56. 21.(a)
    Purves, R. W.; Guevremont, R.; Day, S.; Pipich, C. W.; Matyjaszczyk, M. S. Mass Spectrometric Characterization of a High-Field Asymmetric Waveform Ion Mobility Spectrometer. Rev. Sci. Instrum. 1998, 69, 4094–4105.CrossRefGoogle Scholar
  57. 21.(b)
    Guevremont, R.; Purves, R. W. Atmospheric Pressure Ion Focusing in a High-Field Asymmetric Waveform Ion Mobility Spectrometer. Rev. Sci. Instrum. 1999, 70, 1370–1384.CrossRefGoogle Scholar
  58. 21.(c)
    Krylov, E. V. A Method of Reducing Diffusion Losses in a Drift Spectrometer. Tech. Phys. 1999, 44, 113–116.CrossRefGoogle Scholar
  59. 21.(d)
    Guevremont, R.; Purves, R. W.; Barnett, D. A.; Ding, L. Ion Trapping at Atmospheric Pressure (760 Torr) and Room Temperature with a High-Field Asymmetric Waveform Ion Mobility Spectrometry/Mass Spectrometry. Int. J. Mass Spectrom. 1999, 193, 45–56.CrossRefGoogle Scholar
  60. 22.
    Jurchen, J. C.; Williams, E. R. Origin of Asymmetric Charge Partitioning in the Dissociation of Gas-Phase Protein Homodimers. J. Am. Chem. Soc. 2003, 125, 2817–2826.CrossRefGoogle Scholar
  61. 23.(a)
    Beu, S. C.; Laude, D. A. Open Trapped Ion Cell Geometries for Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry. Int. J. Mass Spectrom. Ion Processes 1992, 112, 215–230.CrossRefGoogle Scholar
  62. 23.(b)
    Guan, S. H.; Marshall, A. G. Ion Traps for Fourier-Transform Ion-Cyclotron Resonance Mass Spectrometry—Principles and Design of Geometric and Electronic Configurations. Int. J. Mass Spectrom. Ion Processes 1995, 146, 241–296.CrossRefGoogle Scholar
  63. 23.(c)
    Vartanian, V. H.; Laude, D. A. Optimization of a Fixed-Volume Open Geometry Trapped Ion Cell for Fourier Transform Ion Cyclotron Mass Spectrometry. Int. J. Mass Spectrom. Ion Processes 1995, 141, 189–200.CrossRefGoogle Scholar
  64. 23.(d)
    Easterling, M. L.; Mize, T. H.; Amster, I. J. MALDI FTMS Analysis of Polymers: Improved Performance Using an Open Ended Cylindrical Analyzer Cell. Int. J. Mass Spectrom. 1997, 169, 387–400.CrossRefGoogle Scholar
  65. 23.(e)
    Kuhnen, F.; Spiess, I.; Wanczek, K. P. Theoretical Comparison of Closed and Open ICR Cells. Int. J. Mass Spectrom. 1997, 167, 761–769.CrossRefGoogle Scholar
  66. 24.(a)
    Beu, S. C.; Laude, D. A. Elimination of Axial Ejection During Excitation with a Capacitively Coupled Open Trapped-Ion Cell for Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry. Anal. Chem. 1992, 64, 177–180.CrossRefGoogle Scholar
  67. 24.(b)
    O’Conner, P. B.; McLafferty, F. W. High-Resolution Ion Isolation with the Ion Cyclotron Resonance Capacitively Coupled Open Cell. J. Am. Soc. Mass Spectrom 1995, 6, 533–535.CrossRefGoogle Scholar
  68. 25.
    R Development Core Team (2004). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; 2004, version 2.0.1, Vienna, Austria.Google Scholar
  69. 26.(a)
    Barnett, D. A.; Ells, B.; Guevremont, R.; Purves, R. W.; Viehland, L. A. Evaluation of Carrier Gases for use in High-Field Asymmetric Waveform Ion Mobility Spectrometry. J. Am. Soc. Mass Spectrom. 2000, 11, 1125–1133.CrossRefGoogle Scholar
  70. 26.(b)
    Spangler, G. E.; Raanan, A. M. Application of Mobility Theory to the Interpretation of Data Generated by Linear and RF Excited Ion Mobility Spectrometers. Int. J. Mass Spectrom. 2002, 214, 95–104.CrossRefGoogle Scholar
  71. 27.(a)
    Gard, E.; Willard, D.; Bregar, J.; Green, M. K.; Lebrilla, C. B. Site-Specificity in the H/D Exchange Reactions of Gas-Phase Protonated Amino-Acids with CH3OD. Org. Mass Spectrom. 1993, 28, 1632–1639.CrossRefGoogle Scholar
  72. 27.(b)
    Gard, E.; Green, M. K.; Bregar, J.; Lebrilla, C. B. Gas-Phase Hydrogen/Deuterium Exchange as a Molecular Probe for the Interaction of Methanol and Protonated Peptides. J. Am. Soc. Mass Spectrom 1994, 5, 623–631.CrossRefGoogle Scholar
  73. 27.(c)
    Green, M. K.; Lebrilla, C. B. The Role of Proton-Bridged Intermediates in Promoting Hydrogen/Deuterium Exchange in Gas-Phase Protonated Diamines, Peptides, and Proteins.. Int. J. Mass Spectrom. 1998, 175, 15–26.CrossRefGoogle Scholar
  74. 28.(a)
    Campbell, S.; Rodgers, M. T.; Marzluff, E. M.; Beauchamp, J. L. Structural and Energetic Constraints on Gas-Phase Hydrogen/Deuterium Exchange Reactions of Protonated Peptides with D2O, CD3OD, CD3CO2D, and ND3. J. Am. Chem. Soc. 1994, 116, 9765–9766.CrossRefGoogle Scholar
  75. 28.(b)
    Campbell, S.; Rodgers, M. T.; Marzluff, E. M.; Beauchamp, J. L. Deuterium Exchange Reactions as a Probe of Biomolecule Structure. Fundamental Studies of Gas Phase H/D Exchange Reactions of Protonated Glycine Oligomers with D2O, CD3OD, CD3CO2D, and ND3. J. Am. Chem. Soc. 1995, 117, 12840–12854.CrossRefGoogle Scholar
  76. 28.(c)
    Lee, S. W.; Lee, H. N.; Kim, H. S.; Beauchamp, J. L. Selective Binding of Crown Ethers to Protonated Peptides Can Be Used to Probe Mechanisms of H/D Exchange and Collision-Induced Dissociation Reactions in the Gas Phase. J. Am. Chem. Soc. 1998, 120, 5800–5805.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2005

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of California at BerkeleyBerkeleyUSA

Personalised recommendations