Pathways of Peptide Ion Fragmentation Induced by Vacuum Ultraviolet Light

  • Weidong Cui
  • Matthew S. Thompson
  • James P. Reilly


One Hundred Fifty-Seven nm photodissociation of singly protonated peptides generates unusual distributions of fragment ions. When the charge is localized at the C-terminus of the peptide, spectra are dominated by x-, v-, and w-type fragments. When it is sequestered at the N-terminus, a- and d-type ions are overwhelmingly abundant. Evidence is presented suggesting that the fragmentation occurs via photolytic radical cleavage of the peptide backbone at the bond between the α- and carbonyl-carbons followed by radical elimination to form the observed daughter ions.


Electron Capture Dissociation Post Source Decay Norrish Type Photodissociation Spectrum Post Source Decay Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hunt, D. F.; Bone, W. M.; Shabanowitz, J.; Rhodes, J.; Ballard, J. M. Sequence analysis of oligopeptides by secondary ion/collision activated dissociation mass spectrometry. Anal. Chem. 1981, 53, 1704–1706.CrossRefGoogle Scholar
  2. 2.
    Cantin, G. T.; Yates, J. R. III. Strategies for shotgun identification of post-translational modifications by mass spectrometry. J. Chromatogr. A 2004, 1053, 7–14.CrossRefGoogle Scholar
  3. 3.
    Price, W. D.; Schnier, P. D.; Williams, E. R. Tandem mass spectrometry of large biomolecule ions by blackbody infrared radiative dissociation. Anal. Chem. 1996, 68, 859–866.CrossRefGoogle Scholar
  4. 4.
    Zimmerman, J. A.; Watson, C. H.; Eyler, J. R. Multiphoton ionization of laser-desorbed neutral molecules in a Fourier transform ion cyclotron resonance mass spectrometer. Anal. Chem. 1991, 63, 361–365.CrossRefGoogle Scholar
  5. 5.
    Bowers, W. D.; Delbert, S. S.; Hunter, R. L.; McIver, R. T., Jr. Fragmentation of oligopeptide ions using ultraviolet laser radiation and Fourier transform mass spectrometry. J. Am. Chem. Soc. 1984, 106, 7288–7289.CrossRefGoogle Scholar
  6. 6.
    Martin, S. A.; Hill, J. A.; Kittrell, C.; Biemann, K. Photon-induced dissociation with a four-sector tandem mass spectrometer. J. Am. Soc. Mass Spectrom. 1990, 1, 107–109.CrossRefGoogle Scholar
  7. 7.
    Barbacci, D. C.; Russell, D. H. Sequence and side-chain specific photofragment (193 nm) ions from protonated Substance P by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. J. Am. Soc. Mass Spectrom. 1999, 10, 1038–1040.CrossRefGoogle Scholar
  8. 8.
    Oh, J. Y.; Moon, J. H.; Kim, M. S. Tandem time-of-flight mass spectrometer for photodissociation of biopolymer ions generated by matrix-assisted laser desorption ionization (MALDI-TOF-PD-TOF) using a linear-plus-quadratic potential reflectron. J. Am. Soc. Mass Spectrom. 2004, 15, 1248–1259.CrossRefGoogle Scholar
  9. 9.
    Thompson, M. S.; Cui, W.; Reilly, J. P. Fragmentation of singly-charged peptides by photodissociation at λ = 157 nm. Angew. Chem. Int. Ed 2004, 43, 4791–4794.Google Scholar
  10. 10.
    Williams, E. R.; Henry, K. D.; McLerty, F. W.; Shabanowitz, J.; Hunt, D. F. Surface-induced dissociation of peptide ions in Fourier-transform mass spectrometry. J. Am. Soc. Mass Spectrom. 1990, 1, 413–416.CrossRefGoogle Scholar
  11. 11.
    Sleno, L.; Volmer, D. A. Ion activation methods for tandem mass spectrometry. J. Mass. Spectrom. 2004, 39, 1091–1112.CrossRefGoogle Scholar
  12. 12.
    Wysocki, V. H.; Tsaprailis, G.; Smith, L. L.; Breci, L. A. Mobile and localized protons: A framework for understanding peptide dissociation. J. Mass Spectrom. 2000, 35, 1399–1406.CrossRefGoogle Scholar
  13. 13.
    Roepstorff, P.; Fohlman, J. Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed. Mass Spectrom. 1984, 11, 601.CrossRefGoogle Scholar
  14. 14.
    Johnson, R. S.; Martin, S. A.; Biemann, K. Collision-induced fragmentation of (M+H)+ ions of peptides. Side chain specific sequence ions. Int. J. Mass Spectrom. Ion Processes 1988, 86, 137–154.CrossRefGoogle Scholar
  15. 15.
    Jensen, N. J.; Tomer, K. B.; Gross, M. L. Gas-phase ion decompositions occurring remote to a charge site. J. Am. Chem. Soc. 1985, 107, 1863–1868.CrossRefGoogle Scholar
  16. 16.
    Gross, M. L. Charge-remote fragmentations: Method, mechanism, and applications. Int. J. Mass Spectrom. Ion Processes 1992, 118/119, 137–165.CrossRefGoogle Scholar
  17. 17.
    Cheng, C.; Gross, M. L. Applications and mechanisms of charge-remote fragmentation. Mass Spectrom. Rev. 2000, 19, 398–420.CrossRefGoogle Scholar
  18. 18.
    Summerfield, S. G.; Dale, V. C. M.; Despeyrous, D. D.; Jennings, K. R. Charge-remote losses of small neutrals from protonated and Group I metal-peptide complexes of peptides. Eur. J. Mass Spectrom. 1995, 1, 183–194.CrossRefGoogle Scholar
  19. 19.
    Zaia, J.; Biemann, K. Comparison of charged derivatives for high energy collisional-induced dissociation tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 1995, 6, 428.CrossRefGoogle Scholar
  20. 20.
    Sadagopan, N.; Watson, J. T. Investigation of the tris(trimethoxyphenyl)phosphonium acetyl charged derivatives of peptides by electrospray ionization mass spectrometry and tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 2000, 11, 107–119.CrossRefGoogle Scholar
  21. 21.
    Huang, Z.-H.; Wu, J.; Roth, K. D. W.; Yang, Y.; Gage, D. A.; Watson, J. T. A. picomole-scale method for charge derivatization of peptides for sequence analysis by mass spectrometry. Anal. Chem. 1997, 69, 137–144.CrossRefGoogle Scholar
  22. 22.
    Liao, P.-C.; Huang, Z.-H.; Allison, J. Charge remote fragmentation of peptides following attachment of a fixed positive charge: A matrix-assisted laser desorption/ionization postsource decay study. J. Am. Soc. Mass Spectrom. 1997, 8, 501–509.CrossRefGoogle Scholar
  23. 23.
    Johnson, R. S.; Martin, S. A.; Biemann, K.; Stults, J. T.; Watson, J. T. Novel fragmentation processes of peptides by collision-induced decomposition in a tandem mass spectrometer: Differentiation of leucine and isoleucine. Anal. Chem. 1987, 59, 2621–2625.CrossRefGoogle Scholar
  24. 24.
    Zubarev, R. A.; Kelleher, N. L.; McLerty, F. W. Electron capture dissociation of multiply charged protein cations. A nonergodic process. J. Am. Chem. Soc. 1998, 120, 3265–3266.CrossRefGoogle Scholar
  25. 25.
    Syka, J. E. P.; Coon, J. J.; Schroeder, M. J.; Shabanowitz, J.; Hunt, D. F. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 9528–9533.CrossRefGoogle Scholar
  26. 26.
    Zubarev, R. A.; Kruger, N. A.; Fridriksson, E. K.; Lewis, M. A.; Horn, D. M.; Carpenter, B. K.; McLerty, F. W. Electron capture dissociation of gaseous multiply-charged proteins is favored at disulfide bonds and other sites of high hydrogen atom inity. J. Am. Chem. Soc. 1999, 121, 2857–2862.CrossRefGoogle Scholar
  27. 27.
    Breuker, K.; Oh, H.; Lin, C.; Carpenter, B. K.; McLerty, F. W. Nonergodic and conformational control of the electron capture dissociation of protein cations. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 14011–14016.CrossRefGoogle Scholar
  28. 28.
    Hu, Y.; Hadas, B.; Davidovitz, M.; Balta, B.; Lifshitz, C. Does IVR take place prior to peptide ion dissociation?. J. Phys. Chem. A 2003, 107, 6507–6514.CrossRefGoogle Scholar
  29. 29.
    Thompson, M. S.; Cui, W.; Reilly, J. P. MALDI photodissociation TOF-TOF mass spectrometry. Proceedings of the 51st ASMS Conference on Mass Spectrometry and Allied Topics; Montreal, Quebec, June, 2003.Google Scholar
  30. 30.
    Williams, E. R.; Furlong, J. J. P.; McLerty, F. W. Efficiency of collisionally-activated dissociation and 193-nm photodissociation of peptide ions in Fourier transform mass spectrometry. J. Am. Soc. Mass Spectrom. 1990, 1, 289–294.Google Scholar
  31. 31.
    Oh, J. Y.; Moon, J. H.; Kim, M. S. Sequence- and site-specific photodissociation at 266 nm of protonated synthetic polypeptides containing a tryptophanyl residue. Rapid Commun. Mass Spectrom. 2004, 18, 2706–2712.CrossRefGoogle Scholar
  32. 32.
    Robin, M. Higher excited states of polyatomic molecules, Vol. II; Academic Press: Orlando, FL, 1975, p. 139.Google Scholar
  33. 33.
    Peterson, D. L.; Simpson, W. T. Polarized electronic absorption spectrum of amides with assignments of transitions. J. Am. Chem. Soc. 1957, 79, 2375–2382.CrossRefGoogle Scholar
  34. 34.
    Clark, L. B. Polarization assignments in the vacuum UV spectra of the primary amide, carboxyl, and peptide groups. J. Am. Chem. Soc. 1995, 117, 7974–7986.CrossRefGoogle Scholar
  35. 35.
    Woody, R. W.; Koslowski, A. Recent developments in the electronic spectroscopy of amides and a-helical polypeptides. Biophys. Chem. 2002, 101/102, 535–551.CrossRefGoogle Scholar
  36. 36.
    Suckau, D.; Resemann, A.; Schuerenberg, M.; Hufnagel, P.; Franzen, J.; Holle, A. A novel MALDI LIFT-TOF/TOF mass spectrometer for proteomics. Anal. Bioanal. Chem. 2003, 376, 952–965.CrossRefGoogle Scholar
  37. 37.
    Medzihradszky, K. F.; Campbell, J. M.; Baldwin, M. A.; Falick, A. M.; Juhasz, P.; Vestal, M. L.; Burlingame, A. L. The characteristics of peptide collision-induced dissociation using a high-performance MALDI-TOF/TOF tandem mass spectrometer. Anal. Chem. 2000, 72, 552–558.CrossRefGoogle Scholar
  38. 38.
    Christian, N. P.; Alexander, A. W.; Reilly, J. P. Design and evaluation of a low-cost, high-speed signal amplifier. Rev. Sci. Instrum. 2001, 72, 243–246.CrossRefGoogle Scholar
  39. 39.
    Beardsley, R. L.; Reilly, J. P. Optimization of guanidination procedures for MALDI mass mapping. Anal. Chem. 2002, 74, 1884–1890.CrossRefGoogle Scholar
  40. 40.
    Eng, J. K.; McCormack, A. L.; Yates, J. R. III. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 1994, 5, 976–989.CrossRefGoogle Scholar
  41. 41.
    Papayannopoulos, I. A. The interpretation of collision-induced dissociation tandem mass spectra of peptides. Mass Spectrom. Rev. 1995, 14, 49–73.CrossRefGoogle Scholar
  42. 42.
    Meroueh, O.; Hase, W. L. Collisional activation of small peptides. J. Phys. Chem. A 1999, 103, 3981–3990.CrossRefGoogle Scholar
  43. 43.
    Despeyroux, D.; Wright, A. D.; Jennings, K. R. Comparison of collision-induced dissociation and surface induced dissociation mass spectra of peptides obtained using a four-sector mass spectrometer. Int. J. Mass Spectrom. Ion Processes 1993, 126, 95–99.CrossRefGoogle Scholar
  44. 44.
    Medzihradszky, K. F.; Adams, G. W.; Burlingame, A. L.; Bateman, R. H.; Green, M. R. Peptide sequence determination by matrix-assisted laser desorption ionization employing a tandem double focusing magnetic-orthogonal acceleration time-of-flight mass spectrometer. J. Am. Soc. Mass Spectrom. 1996, 7, 1–10.CrossRefGoogle Scholar
  45. 45.
    Stimson, E.; Truong, O.; Richter, W. J.; Waterfield, M. D.; Burlingame, A. L. Enhancement of charge-remote fragmentation in protonated peptides by high-energy CID MALDI-TOF-MS using “cold” matrices. Int. J. Mass Spectrom. Ion Processes 1997, 169/170, 231–240.CrossRefGoogle Scholar
  46. 46.
    Norrish, R. G. W.; Crone, H. G.; Saltmarsh, O. D. Primary photochemical reactions. Part V. The spectroscopy and photochemical decomposition of acetone. J. Chem. Soc. 1934, 1456–1464.Google Scholar
  47. 47.
    Turro, N. J. Modern molecular photochemistry; Benjamin/Cummings: Menlo Park, NJ, 1978, pp. 528–532.Google Scholar
  48. 48.
    Bosco, S. R.; Cirillo, A.; Timmons, R. B. Photolysis of formamides and acetamides studies by electron spin resonance. J. Am. Chem. Soc. 1969, 91, 3140–3143.CrossRefGoogle Scholar
  49. 49.
    Spengler, B.; Kirsch, D.; Kaufmann, R. Metastable decay of peptides and proteins in matrix-assisted laser-desorption mass spectrometry. Rapid Commun. Mass Spectrom. 1991, 5, 198–202.CrossRefGoogle Scholar
  50. 50.
    Spengler, B.; Kirsch, D.; Kaufmann, R. Fundamental aspects of postsource decay in matrix-assisted laser desorption mass spectrometry. 1. Residual gas effects. J. Phys. Chem. 1992, 96, 9678–9684.CrossRefGoogle Scholar
  51. 51.
    Gluckmann, M.; Karas, M. Special feature: Perspective—The initial ion velocity and its dependence on matrix, analyte, and preparation method in ultraviolet matrix-assisted laser desorption ionization. J. Mass Spectrom. 1999, 34, 467–477.CrossRefGoogle Scholar
  52. 52.
    Zenobi, R.; Knochenmuss, R. Ion formation in MALDI mass spectrometry. Mass Spectrom. Rev. 1998, 17, 337–366.CrossRefGoogle Scholar
  53. 53.
    Luo, G. H.; Marginean, I.; Vertes, A. Internal energy of ions generated by matrix-assisted laser desorption/ionization. Anal. Chem 2002, 74, 6185–6190.CrossRefGoogle Scholar
  54. 54.
    Hettick, J. M.; McCurdy, K. L.; Barbacci, D. C.; Russell, D. H. Optimization of sample preparation for peptide sequencing by MALDI-TOF photofragment mass spectrometry. Anal. Chem. 2001, 73, 5378–5386.CrossRefGoogle Scholar
  55. 55.
    Koster, C.; Castoro, J. A.; Wilkins, C. L. High-resolution matrix-assisted laser desorption ionization of biomolecules by Fourier-transform mass-spectrometry. J. Am. Chem. Soc. 1992, 114, 7572–7574.CrossRefGoogle Scholar
  56. 56.
    Shufang, N.; Wenzhu, Z.; Chait, B. T. Direct comparison of infrared and ultraviolet wavelength matrix-assisted laser desorption/ionization mass spectrometry of proteins. J. Am. Soc. Mass Spectrom. 1998, 9, 1–7.Google Scholar
  57. 57.
    Strupat, K.; Karas, M.; Hillenkamp, F. 2,5-Dihydroxybenzoic acid: A new matrix for laser desorption-ionization mass spectrometry. Int. J. Mass Spectrom. Ion Processes 1991, 111, 89–102.CrossRefGoogle Scholar
  58. 58.
    Harrison, A. G. The gas-phase basicities and proton inities of amino acids and peptides. Mass Spectrom. Rev. 1997, 16, 201–217.CrossRefGoogle Scholar
  59. 59.
    Dongre, A. R.; Jones, J. L.; Somogyi, A.; Wysocki, V. H. Influence of peptide composition, gas-phase basicity, and chemical modification on fragmentation efficiency: Evidence for the mobile proton model. J. Am. Chem. Soc. 1996, 118, 8365–8374.CrossRefGoogle Scholar
  60. 60.
    Beardsley, R. L.; Karty, J. A.; Reilly, J. P. Enhancing the intensities of lysine-terminated tryptic peptide ions in matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2000, 14, 2147–2153.CrossRefGoogle Scholar
  61. 61.
    Kim, S. K.; Pedersen, S.; Zewail, A. H. Direct femtosecond observation of the transient intermediate in the alpha-cleavage reaction of (CH3)2CO to 2CH3+CO: Resolving the issue of concertedness. J. Chem. Phys. 1995, 103, 477–480.CrossRefGoogle Scholar
  62. 62.
    Diau, E. W.-G.; Herek, J. L.; Kim, Z. H.; Zewail, A. H. Femtosecond activation of reactions and the concept of nonergodic molecules. Science 1998, 279, 847–851.CrossRefGoogle Scholar
  63. 63.
    Zubarev, R. A.; Horn, D. M.; Fridriksson, E. K.; Kelleher, N. L.; Kruger, N. A.; Lewis, M. A.; Carpenter, B. K.; McLerty, F. W. Electron capture dissociation for structural characterization of multiply charged protein cations. Anal. Chem. 2000, 72, 563–573.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2005

Authors and Affiliations

  • Weidong Cui
    • 1
  • Matthew S. Thompson
    • 1
  • James P. Reilly
    • 1
  1. 1.Department of ChemistryIndiana UniversityBloomingtonUSA

Personalised recommendations