Ion-Ion and ion-molecule reactions at the surface of proteins produced by nanospray. Information on the number of acidic residues and control of the number of ionized acidic and basic residues

Articles

Abstract

Mass Spectra of charge states of folded proteins were obtained with nanospray and aqueous solution containing 20 µM the protein (ubiquitin, cytochrome c, lysozyme) and one of the NaA salts NaCl, NaI, NaAc (acetate) (1–10 mM). At very low collision activated decomposition (CAD), the mass spectra of a protein with charge z exhibited a replacement of zH+ with zNa+ and also multiple adducts of NaA. Higher CAD converts the NaA adduct peaks to Na minus H peaks. These must be due to loss of HA where the H was provided by the protein. The degree of HA loss with increasing CAD followed the order I<Cl<Ac. Significantly, the intensity of the ions with n (Na minus H) adducts showed a downward break past an nMAX which is equal to the number of acidic residues of the protein plus the charge of the protein. All the observations could be rationalized within the framework of the electrospray mechanism and the charge residue model, which predict that due to extensive evaporation of solvent, the solutes will reach very high concentrations in the final charged droplets. At such high concentrations, positive ions such as Na+, NH4+ form ion pairs with ionized acidic residues and the negative A form ion pairs with ionized basic residues of the protein. Adducts of Na+, and NaA to backbone amide groups occur also. This reaction mechanism fits all the experimental observations and provides predictions that the number of acidic and basic groups at the surface of the gaseous protein that remain ionized can be controlled by the absence or presence of additives to the solution.

References

  1. 1.(a)
    Neubauer, G.; Anderegg, R. Identifying Charge States of Peptides in Ligand Chromatography/Electrospray Ionization Mass Spectrometry. J. Anal. Chem. 1994, 66, 1056–1061;CrossRefGoogle Scholar
  2. 1.(b)
    Rodriquez, C. F.; Fournier, R.; Chu, I. K.; Hopkinson, A. C.; Siu, M. W. A Possible Origin of [M−nH+mX](m−n)+ Ions (X=Alkali Metal Ions) in Electrospray of Peptides. Int. J. Mass Spectrom. 1999, 192, 303–317;CrossRefGoogle Scholar
  3. 1.(c)
    Rodriquez, C. F.; Guo, X.; Shoeib, T.; Hopkinson, A. C.; Siu, M. W. Formation of [M−nH+mNa](m−n)+ and [M−nH+mK](m−n)+ Ions in Electrospray Mass Spectrometry of Peptides and Proteins. J. Am. Soc. Mass Spectrom. 2000, 11, 967–975;CrossRefGoogle Scholar
  4. 1.(d)
    Ogorzalek, R. R.; Dales, P. C.; Andrews, N. Surfactant Effects on Protein Structure Examined by Electrospray Ionization Mass Spectrometry. Protein Sci. 1994, 3, 1975–1983;CrossRefGoogle Scholar
  5. 1.(e)
    Rundlett, K. L.; Armstrong, D. W. Mechanism of Signal Suppression by Anionic Surfactants in Capillary Electrophoresis-Electrospray Ionization Mass Spectrometry. Anal. Chem. 1996, 68 3493–3497;CrossRefGoogle Scholar
  6. 1.(e)(a)
    Pan, P.; McLuckey, S. A. The Effect of Small Cations on the Positive Electrospray Responses of Proteins at Low pH. Anal. Chem. 2003, 75, 5468–5474;CrossRefGoogle Scholar
  7. 1.(f)
    Holcapek, M.; Volna, K.; Jandera, P.; Kolarova, L.; Lemr, K.; Exner, M.; Cirkva, A. Effects of Ion-Pairing Reagents on the Electrospray Signal Suppression of Sulphonated Dyes and Intermediates. J. Mass Spectrom. 2004, 39, 43–50;CrossRefGoogle Scholar
  8. 1.(g)
    Benkestock, K.; Sundquist, G.; Edlund, P.; Roeraade, J. Influence of Droplet Size, Capillary-Cone Distance, and Selected Instrumental Parameters for the Analysis of Noncovalent Protein-Ligand Complexes by Nano-Electrospray Ionization Mass Spectrometry. J. Mass Spectrom. 2004, 39, 1059–1067;CrossRefGoogle Scholar
  9. 1.(h)
    Iavarone, A. T.; Udekwu, O. A.; Williams, E. R. Buffer Loading for Counteracting Metal Salt-Induced Signal Suppression in Electrospray Ionization. Anal. Chem. 2004, 76, 3944–3950.CrossRefGoogle Scholar
  10. 2.(a)
    Kebarle, P.; Tang, L. From Ions in Solution to Ions in the Gas Phase—The Mechanism of Electrospray Mass Spectrometry. Anal. Chem. 1993, 65, A972-A986;Google Scholar
  11. 2.(b)
    Tang, L.; Kebarle, P. Dependence of the Ion Intensity in Electrospray Mass Spectrometry on the Concentration of the Analytes in the Electrosprayed Solution. Anal. Chem. 1993, 65, 3654–3668.CrossRefGoogle Scholar
  12. 3.
    Kebarle, P.; Ho, Y. On the Mechanism of Electrospray Mass Spectrometry. In Electrospray Mass Spectrometry; Cole, R. B., Ed.; Wiley Interscience Publications, John Wiley and Sons: New York, NY, 1997; p 1.Google Scholar
  13. 4.
    Li, J.; Taraszka, J. A.; Counterman, A. E.; Clemmer, D. E. Influence of Solvent Composition and Capillary Temperature on the Conformations of Electrosprayed Ions: Unfolding of Compact Ubiquitin Conformers from Pseudonative and Denatured Solutions. Int. J. Mass Spectrom. 1999, 185/186/187, 37–47.CrossRefGoogle Scholar
  14. 5.
    Blades, A. T.; Ikonomou, M. G.; Kebarle, P. Mechanism of Electrospray Mass Spectrometry. Electrospray as an Electrolysis Cell. Anal. Chem. 1991, 64, 2109–2114.CrossRefGoogle Scholar
  15. 6.
    Van Berkel, G. E.; Assano, K. G.; Schnier, P. D. Electrochemical Processes in a Wire-in-a-Capillary Bulk Loaded Nano-Electrospray Emitter. J. Am. Soc. Mass Spectrom. 2001, 12, 853–862.CrossRefGoogle Scholar
  16. 7.
    Peschke, M.; Verkerk, U.; Kebarle, P. Features of the ESI Mechanism that Affect the Observation of Multiply Charged Noncovalent Protein Complexes and the Determination of the Association Constant by the Titration Method. J. Am. Soc. Mass Spectrom. 2004, 15, 1424–1434.CrossRefGoogle Scholar
  17. 8.(a)
    Smith, J. N.; Flagan, R. C.; Beauchamp, J. L. Droplet Evaporation and Discharge Dynamics in Electrospray Ionization. J. Phys. Chem. A 2002, 106, 9957–9967;CrossRefGoogle Scholar
  18. 8.(b)
    Grimm, L. R.; Beauchamp, J. L. Evaporation and Discharge Dynamics of Highly Charged Droplets of Heptane, Octane, and p-Xylene Generated by Electrospray Ionization. Anal. Chem. 2002, 74, 6291–6297.CrossRefGoogle Scholar
  19. 9.
    de la Mora, J. F. Electrospray Ionization of Large Multiply Charged Species Proceeds via Dole’s Charged Residue Mechanism. Anal. Chim. Acta 2000, 408, 93–104.CrossRefGoogle Scholar
  20. 10.(a)
    Felitsyn, N.; Peschke, M.; Kebarle, P. Origin and Number of Charges Observed on Multiply Protonated Native Proteins Produced by ESI. Int. J. Mass Spectrom. 2002, 219, 39–62;CrossRefGoogle Scholar
  21. 10.(b)
    Peschke, M.; Blades, A. T.; Kebarle, P. Charged States of Proteins. Reactions of Doubly Protonated Alkyl Diamines with NH3: Solvation or Deprotonation. Extension of Two Proton Cases to Multiply Protonated Globular Proteins Observed in the Gas Phase. J. Am. Chem. Soc. 2002, 124, 11519–11530;CrossRefGoogle Scholar
  22. 10.(c)
    Verkerk, U.; Peschke, M.; Kebarle, P. Effect of Buffer Cations and H3O+ on the Charge States of Native Proteins. Significance to the Determination of Stability Constants of Protein Complexes. J. Mass Spectrom. 2003, 38, 618–631.CrossRefGoogle Scholar
  23. 11.(a)
    Schmidt, A.; Karas, M.; Dulks, T. Effect of Different Solution Flow Rates on Analyte Ion Signals in Nano-ESI MS, or When Does ESI Turn into Nano-ESI?. J. Am. Soc. Mass Spectrom. 2003, 14, 492–500;CrossRefGoogle Scholar
  24. 11.(b)
    Anacleto, J. F.; Pleasance, S.; Boyd, R. K. Calibration of Mass Spectra Using Cluster Ions. Org. Mass Spectrom. 1992, 27, 660–666.CrossRefGoogle Scholar
  25. 12.
    Myung, S.; Badman, E. R.; Lee, Y. J.; Clemmer, D. E. Structural Transitions of Electrosprayed Ubiquitin Ions Stored in an Ion Trap over 10 ms to 30 s. J. Phys. Chem. A 2002, 106, 9976–9982.CrossRefGoogle Scholar
  26. 13.
    Blades, A. T.; Peschke, M.; Verkerk, U. H.; Kebarle, P. Hydration Energies in the Gas Phase of Select (MX)mM+ Ions where M+=Na+, K+, R+, Cs+, NH3+, and X=F, Cl, Br, I, NO2−, NO3−. Observed Magic Numbers of (MX)m M+ Ions and their Possible Significance. J. Am. Chem. Soc. 2004, 126, 1995–2003.CrossRefGoogle Scholar
  27. 14.(a)
    Barlow, S. E.; van Doren, J. M.; Depuy, C. H.; Bierbaum, V. M.; Dotan, I.; Ferguson, E.; Adams, N. G.; Smith, D.; Rowe, R. R.; Marquette, J. B.; Dupereyat, G.; Durup-Ferguson, M. Studies of Reactions of O2+ with Deuterated Methanes. J. Chem. Phys. 1988, 85, 3851–3859;CrossRefGoogle Scholar
  28. 14.(b)
    Bure, C.; Lange, L. Comparison of Dissociation of Ions in an Electrospray Source, or a Collision Cell in Tandem Mass Spectrometry. Curr. Org. Chem. 2003, 7, 1613–1624.CrossRefGoogle Scholar
  29. 15.
    Klibanov, A. M. Improving Enzymes by Using them In Organic Solvents. Nature 2001, 409, 241–246.CrossRefGoogle Scholar
  30. 16.
    Sundd, M.; Iverson, N.; Ibarra-Molero, B.; Sanchez-Ruiz, J. M.; Robertson, A. D. Electrostatic Interactions in Ubiquitin: Stabilization of Carboxylates by Lysine Amino Groups. Biochemistry 2002, 41, 7586–7596.CrossRefGoogle Scholar
  31. 17.
    Stephenson, J. L.; McLuckey, S. A. Gaseous Protein Cations are Amphotheric. J. Am. Chem. Soc. 1997, 119, 1688–1696.CrossRefGoogle Scholar
  32. 18.
    Stephenson, J. L.; McLuckey, S. A. Counting Basic Sites in Oligopeptides via Gas Phase Ion Chemistry. Anal. Chem. 1997, 69, 281–286.CrossRefGoogle Scholar
  33. 19.
    NIST Standard Reference Database; http://webbook.nist.gov.chemistry.Google Scholar
  34. 20.
    Klassen, J. S.; Anderson, S. G.; Blades, A. T.; Kebarle, P. Reaction Enthalpies for M+L=M++L where M+(Na+, K+) and L (acetamide, N-methyl-acetamide, glycine, and glycylglycine) from the Determination of the Collision Induced Dissociation Thresholds. J. Phys. Chem. 1996, 100, 14218–14227.CrossRefGoogle Scholar
  35. 21.
    Cerda, B. A.; Hoyan, S.; Ohanessian, G.; Wesdemiotis, C. Na+ Binding to Cyclic and Linear Dipeptides. Bond Energies, Entropies of Na+ Complexation, and Attachment Sites from Dissociation of Na+-Bond Heterodimers and Ab Initio Calculations. J. Am. Chem. Soc. 1998, 120, 2437–2448.CrossRefGoogle Scholar
  36. 22.
    Timoleer, O.; Zhu, M. M.; Gross, M. L. Information for Proteomics: ESI-MS Titration by Sodium Ions Gives Number of Carboxylate Groups in Peptides. Int. J. Mass Spectrom. 2004, 231, 113–117.CrossRefGoogle Scholar
  37. 23.(a)
    Thomson, B. A.; Iribarne, J. V. Field Induced Ion Evaporation from Liquid Surfaces at Atmospheric Pressures. J. Chem. Phys. 1976, 71, 4451–4462;CrossRefGoogle Scholar
  38. 23.(b)
    Iribarne, J. V.; Thomson, B. A. On the Evaporation of Small Ions from Charged Droplets. J. Chem. Phys. 1976, 64, 2287–2294.CrossRefGoogle Scholar
  39. 24.
    Ganero Castano, M.; Fernandez de la Mora, J. Mechanism of Electrospray Ionization of Singly and Multiply Charged Salt Clusters. Anal. Chim. Acta 2000, 406, 67–91.CrossRefGoogle Scholar
  40. 25.(a)
    Cumming, J. B.; Kebarle, P. Summary of Gas Phase Acidities Measurements Involving Acids AH. Entropy Changes in Proton Transfer Reactions Involving Negative Ions. Bond Dissociation Energies D(A—H) and Electron Affinities EA(A). Can. J. Chem. 1978, 56, 1–9;CrossRefGoogle Scholar
  41. 25.(b)
    Hornstrop, D.; Gustavson, M. Determination of the Electron Affinity of Iodine. J. Phys. B 1992, 25, 1773–1777.CrossRefGoogle Scholar
  42. 26.
    Felitsyn, N.; Kitova, E. N.; Klassen, J. S. Thermal Decomposition of a Gaseous Multiprotein Complex Studied by Blackbody Infrared Radiative Dissociation. Investigating the Origin of the Asymmetric Dissociation Behavior. Anal. Chem. 2001, 73, 4647–4661.CrossRefGoogle Scholar
  43. 27.(a)
    Grandori, R. Origin of the Conformation Dependence of Protein Charge State Distributions of Electrospray Mass Spectrometry. J. Mass Spectrom. 2003, 38, 11–15;CrossRefGoogle Scholar
  44. 27.(b)
    Samalikova, M.; Grandori, R. Role of Opposite Charges in Protein Electrospray Ionization Mass Spectrometry. J. Mass Spectrom. 2003, 38, 941–947.CrossRefGoogle Scholar
  45. 28.
    Katta, V.; Chait, B. T. Observations of the Heme-Globin Complex in Native Myoglobin by Electrospray Mass Spectrometry. J. Am. Chem. Soc. 1991, 113, 8534–8535.CrossRefGoogle Scholar
  46. 29.
    Nesatyy, V. J.; Suter, J. F. On the Conformation Dependent Neutralization Theory and Charging of Individual Proteins and Their Noncovalent Complexes in the Gas Phase. J. Mass Spectrom. 2004, 39, 93–97.CrossRefGoogle Scholar
  47. 30.
    Alexander, A. J.; Kebarle, P. Thermospray Mass Spectrometry. Use of Gas Phase Ion/Molecule Reactions to Explain Features of Thermospray Mass Spectra. Anal. Chem. 1986, 58, 471–478.CrossRefGoogle Scholar
  48. 31.
    Tolic, L. P.; Anderson, G. A.; Smith, R. D.; Brothers, H. M.; Spindler, R.; Tomalia, D. A. Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometric Characterization of High Molecular Mass Starburst Dendrimers. Int. J. Mass Spectrom. Ion Processes 1997, 165/166, 405–418.CrossRefGoogle Scholar
  49. 32.
    Samalikova, M.; Grandori, R. Protein Charge State Distributions in Electrospray-Ionization Mass Spectrometry Do Not Appear to be Limited by the Surface Tension of the Solvent. J. Am. Chem. Soc. 2003, 125, 1352–1353.CrossRefGoogle Scholar
  50. 33.
    Juraschek, R.; Dulcks, T.; Karas, M. Nanospray—More Than Just a Minimized-Flow Electrospray. J. Am. Soc. Mass Spectrom. 1999, 10, 300–308.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2005

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of AlbertaEdmontonCanada

Personalised recommendations