Structural characterization of G-quadruplexes in deoxyguanosine clusters using ion mobility mass spectrometry

  • Erin Shammel Baker
  • Summer L. Bernstein
  • Michael T. Bowers
Focus: Novel Approaches To Peptide And Protein Structure

Abstract

The aggregation and conformation of deoxyguanosine (dG) in an ammonium acetate buffer solution were examined using mass spectrometry, ion mobility, and molecular mechanics/dynamics calculations. The nano-ESI mass spectrum indicated that 4 and 6 dGs cluster with 1 NH4+; 11 dGs with 2 NH4+; 14, 16, and 17 dGs with 3 NH4+; and 23 dGs with 4 NH4+. The collision cross sections with helium were measured and compared with calculated cross sections of theoretical structures generated by molecular mechanics/dynamics calculations. Three distinct arrival time distribution (ATD) peaks were observed for (4dG + NH4)+. One peak was assigned to the quadruplex structure of (4dG + NH4)+, while the other two peaks corresponded to the quadruplex structures of (8dG + 2NH4)2+ and (12dG + 3NH4)3+, all with the same m/z. Four ATD peaks were observed for (6dG + NH4)+ and assigned to the globular structure of (6dG + NH4)+, and the quadruplex structures of (12dG + 2NH4)2+, (18dG + 3NH4)3+, and (24dG + 4NH4)4+. Two ATD peaks were observed for (11dG + 2NH4)2+ and assigned to the quadruplex structures of (11dG + 2NH4)2+ and (22dG + 4NH4)4+. All of the other clusters in the mass spectrum (14, 16, and 17 dGs with 3 NH4+ and 23 dGs with 4 NH4+) only had one peak in their ATDs and in all cases the theoretical structures in a quadruplex arrangement agreed with the experimental cross sections. These results provide compelling evidence that quadruplexes are present in solution and retain their structure during the spray process, dehydration, and detection.

References

  1. 1.
    Sinden, R. R. DNA Structure and Function; Academic Press: San Diego, CA, 1994.Google Scholar
  2. 2.
    Singleton, C. K.. J. Biol. Chem. 1983, 258, 7661.Google Scholar
  3. 3.
    Sullivan, K. M.; Lilley, D. M.. J. Mol. Biol. 1987, 193, 397.CrossRefGoogle Scholar
  4. 4.
    Neidle, S.; Read, M. A.. Biopolymers 2001, 56, 195.CrossRefGoogle Scholar
  5. 5.
    Lyonnais, S.; Hounsou, C.; Teulade-Fichou, M.; Jeusset, J.; Cam, E. L.; Mirambeau, G.. Nucleic Acid Res. 2002, 30, 5276.CrossRefGoogle Scholar
  6. 6.
    Singleton, C. K.; Klysik, J.; Stirdivant, S. M.; Wells, R. D.. Nature (London) 1982, 299, 312.CrossRefGoogle Scholar
  7. 7.
    Singleton, C. K.; Klysik, J.; Wells, R. D.. Proc. Natl. Acad. Sci. U.S.A. 1983, 80, 2447.CrossRefGoogle Scholar
  8. 8.
    Sen, D.; Gilbert, W.. Nature 1988, 334, 364.CrossRefGoogle Scholar
  9. 9.
    Evans, T.; Schon, E.; Gora-Maslak, G.; Patterson, J.; Efstratiadis, A.. Nucleic Acid Res. 1984, 12, 8043.CrossRefGoogle Scholar
  10. 10.
    Sarig, G.. J. Biol. Chem. 1997, 272, 4474.CrossRefGoogle Scholar
  11. 11.
    Blackburn, E. H.. Cell 1994, 77, 621.CrossRefGoogle Scholar
  12. 12.
    Hurley, L. H.; Wheelhouse, R. T.; Sun, D.; Kerwin, S. M.; Salazar, M.; Fedoroff, O. Y.; Han, F. X.; Han, H. Y.; Izbicka, E.; Von Hoff, D. D.. Pharmacol. Ther. 2000, 85, 141.CrossRefGoogle Scholar
  13. 13.
    Han, H. Y.; Hurley, L. H.. Trends Pharmacol. Sci. 2000, 21, 136.CrossRefGoogle Scholar
  14. 14.
    Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M.. Science 1989, 246, 64.CrossRefGoogle Scholar
  15. 15.
    Smith, R. D.; Loo, J. A.; Edmonds, C. G.; Barinaga, H. R.; Udseth, H. R.. Anal. Chem. 1990, 62, 882.CrossRefGoogle Scholar
  16. 16.
    Chait, B.; Kent, S. B. H.. Science 1992, 257, 1885.CrossRefGoogle Scholar
  17. 17.
    Whitehouse, C. M.; Dreyer, R. N.; Yamashita, M.; Fenn, J. B.. Anal. Chem. 1985, 57, 675.CrossRefGoogle Scholar
  18. 18.
    Yamashita, M.; Fenn, J. B.. J. Phys. Chem. 1984, 88, 2240.Google Scholar
  19. 19.
    Henry, K. D.; Williams, E. R.; Wang, B.-H.; McLafferty, F. W.; Shabanowitz, J.; Hunt, D. F.. Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 9075.CrossRefGoogle Scholar
  20. 20.
    Henry, K. D.; Quinn, J. P.; McLafferty, F. W.. J. Am. Chem. Soc. 1991, 113, 5447.CrossRefGoogle Scholar
  21. 21.
    Chowdhury, S. K.; Eshraghi, J.; Wolfe, H.; Forde, D.; Hlavac, A. G.; Johnston, D.. Anal. Chem. 1995, 67, 390.CrossRefGoogle Scholar
  22. 22.
    Fukushima, K.; Iwahashi, H.. Chem. Commun. 2000, 11, 895.CrossRefGoogle Scholar
  23. 23.
    Manet, I.; Francini, L.; Masiero, S.; Pieraccini, S.; Spada, G. P.; Gottarelli, G.. Helv. Chim. Acta 2001, 84, 2096.CrossRefGoogle Scholar
  24. 24.
    Aggerholm, T.; Nanita, S. C.; Koch, K. J.; Cooks, R. G.. J. Mass Spectrom. 2003, 38, 87.CrossRefGoogle Scholar
  25. 25.
    Goodlett, D. R.; Camp, D. G. II; Hardin, C. C.; Corregan, M.; Smith, R. D.. Biol. Mass Spectrom. 1993, 22, 181.CrossRefGoogle Scholar
  26. 26.
    Rosu, F.; Gabelica, V.; Houssier, C.; Colson, P.; De Pauw, E.. Rapid Commun. Mass Spectrom. 2002, 16, 1729.CrossRefGoogle Scholar
  27. 27.
    Bowers, M. T.; Kemper, P. R.; von Helden, G.; van Koppen, P. A. M.. Science 1993, 260, 1446.CrossRefGoogle Scholar
  28. 28.
    Clemmer, D. E.; Jarrold, M. F.. Mass Spectrom. Rev. 1997, 32, 577.CrossRefGoogle Scholar
  29. 29.
    Wyttenbach, T.; Kempe, P. R.; Bowers, M. T.. Int. J. Mass Spectrom. 2001, 212, 13.CrossRefGoogle Scholar
  30. 30.
    Mason, E. A.; McDaniel, E. W. Transport Properties of Ions in Gases; Wiley: New York, 1988.CrossRefGoogle Scholar
  31. 31.
    Hyperchem 7.0; Hypercube Inc., Gainesville, FL, 2002.Google Scholar
  32. 32.
    Case, D. A.; Pearlman, D. A.; Caldwell, J. W.; Cheatham, T. E. III; Wang, J.; Ross, W. S.; Simmerling, C. L.; Darden, T. A.; Merz, K. M.; Stanton, R. V.; Cheng, A. L.; Vincent, J. J.; Crowley, M.; Tsui, V.; Gohlke, H.; Radmer, R. J.; Duan, Y.; Pitera, J.; Massova, I.; Seibel, G. L.; Singh, U. C.; Weiner, P. K.; Kollman, P. A. AMBER 7 2002; University of California, San Francisco.Google Scholar
  33. 33.
    Gidden, J.; Ferzoco, A.; Baker, E. S.; Bowers, M. T.. J. Am. Chem. Soc. 2004, 126, 15132.CrossRefGoogle Scholar
  34. 34.
    Gidden, J.; Bowers, M. T.. J. Phys. Chem. B 2003, 107, 12829.CrossRefGoogle Scholar
  35. 35.
    Baker, E. S.; Gidden, J.; Ferzoco, A.; Bowers, M. T.. Phys. Chem. Chem. Phys. 2004, 6, 2786.CrossRefGoogle Scholar
  36. 36.
    Wyttenbach, T.; von Helden, G.; Batka, J. J.; Carlat, D.; Bowers, M. T.. J. Am. Soc. Mass Spectrom. 1997, 8, 275.CrossRefGoogle Scholar
  37. 37.
    Wyttenbach, T.; Witt, M.; Bowers, M. T.. J. Am. Chem. Soc. 2000, 122, 3458.CrossRefGoogle Scholar
  38. 38.
    Mesleh, M. F.; Hunter, J. M.; Shvartsburg, A. A.; Schwartz, G. C.; Jarrold, M. F.. J. Phys. Chem. 1996, 100, 16082.CrossRefGoogle Scholar
  39. 39.
    Shvartsburg, A. A.; Jarrold, M. F.. Chem. Phys. Lett. 1996, 261, 86.CrossRefGoogle Scholar
  40. 40.
    Wyttenbach, T.; Bowers, M. T.. Top. Curr. Chem. 2003, 225, 207.CrossRefGoogle Scholar
  41. 41.
    Bernstein, S. L.; Wyttenbach, T.; Baumketner, A.; Shea, J.-E.; Bitan, G.; Teplow, D. B.; Bowers, M. T.. J. Am. Chem. Soc. 2005, 127, 2075.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2005

Authors and Affiliations

  • Erin Shammel Baker
    • 1
  • Summer L. Bernstein
    • 1
  • Michael T. Bowers
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations