Quantitative analysis of the low molecular weight serum proteome using 18O stable isotope labeling in a lung tumor xenograft mouse model

  • Brian L. Hood
  • David A. Lucas
  • Grace Kim
  • King C. Chan
  • Josip Blonder
  • Haleem J. Issaq
  • Timothy D. Veenstra
  • Thomas P. Conrads
  • Ingrid Pollet
  • Aly Karsan
Focus: Proteomics And Disease

Abstract

With advancements in the analytical technologies and methodologies in proteomics, there is great interest in biomarker discovery in biofluids such as serum and plasma. Current hypotheses suggest that the low molecular weight (LMW) serum proteome possesses an archive of clipped and cleaved protein fragments that may provide insight into disease development. Though these biofluids represent attractive samples from which new and more accurate disease biomarkers may be found, the intrinsic person-to-person variability in these samples complicates their discovery. Mice are one of the most extensively used animal models for studying human disease because they represent a highly controllable experimental model system. In this study, the LMW serum proteome was compared between xenografted tumor-bearing mice and control mice by differential labeling utilizing trypsin-mediated incorporation of the stable isotope of oxygen, 18O. The digestates were combined, fractionated by strong cation exchange chromatography, and analyzed by nanoflow reversed-phase liquid chromatography coupled online with tandem mass spectrometry, resulting in the identification of 6003 proteins identified by at least a single, fully tryptic peptide. Almost 1650 proteins were identified and quantitated by two or more fully tryptic peptides. The methodology adopted in this work provides the means for future quantitative measurements in comparative animal models of disease and in human disease cohorts.

Supplementary material

13361_2011_160801221_MOESM1_ESM.rtf (1.4 mb)
Supplementary material, approximately 1419 KB.
13361_2011_160801221_MOESM2_ESM.rtf (1.8 mb)
Supplementary material, approximately 1892 KB.

References

  1. 1.
    Adkins, J. N.; Varnum, S. M.; Auberry, K. J.; Moore, R. J.; Angell, N. H.; Smith, R. D.; Springer, D. L.; Pounds, J. G. Toward a Human Blood Serum Proteome: Analysis by Multidimensional Separation Coupled with Mass Spectrometry. Mol. Cell. Proteom. 2002, 1, 947–955.CrossRefGoogle Scholar
  2. 2.
    Tirumalai, R. S.; Chan, K. C.; Prieto, D. A.; Issaq, H. J.; Conrads, T. P.; Veenstra, T. D. Characterization of the Low Molecular Weight Human Serum Proteome. Mol. Cell. Proteom. 2003, 13, 13–18.Google Scholar
  3. 3.
    Carrette, O.; Demalte, I.; Scherl, A.; Yalkinoglu, O.; Corthals, G.; Burkhard, P.; Hochstrasser, D. F.; Sanchez, J. C. A Panel of Cerebrospinal Fluid Potential Biomarkers for the Diagnosis of Alzheimer’s Disease. Proteomics 2003, 3, 1486–1494.CrossRefGoogle Scholar
  4. 4.
    Cepok, S.; Jacobsen, M.; Schock, S.; Omer, B.; Jaekel, S.; Boddeker, I.; Oertel, W. H.; Sommer, N.; Hemmer, B. Patterns of Cerebrospinal Fluid Pathology Correlate with Disease Progression in Multiple Sclerosis. Brain 2001, 124, 2169–2176.CrossRefGoogle Scholar
  5. 5.
    Washburn, M. P.; Wolters, D.; Yates, J. R. Large-Scale Analysis of the Yeast Proteome by Multidimensional Protein Identification Technology. Nat. Biotechnol. 2001, 19, 242–247.CrossRefGoogle Scholar
  6. 6.
    Resing, K. A.; Meyer-Arendt, K.; Mendoza, A. M.; Aveline-Wolf, L. D.; Jonscher, K. R.; Pierce, K. G.; Old, W. M.; Cheung, H. T.; Russell, S.; Wattawa, J. L.; Goehle, G. R.; Knight, R. D.; Ahn, N. G. Improving Reproducibility and Sensitivity in Identifying Human Proteins by Shotgun Proteomics. Anal. Chem. 2004, 76, 3556–3568.CrossRefGoogle Scholar
  7. 7.
    Yu, L. R.; Conrads, T. P.; Uo, T.; Kinoshita, Y.; Morrison, R. S.; Lucas, D. A.; Chan, K. C.; Blonder, J.; Issaq, H. J.; Veenstra, T. D. Global Analysis of the Cortical Neuron Proteome. Mol. Cell. Proteom. 2004, 3, 896–907.CrossRefGoogle Scholar
  8. 8.
    Anderson, N. L.; Anderson, N. G. The Human Plasma Proteome—History, Character, and Diagnostic Prospects. Mol. Cell. Proteom. 2002, 1, 845–867.CrossRefGoogle Scholar
  9. 9.
    Rothemund, D. L.; Locke, V. L.; Liew, A.; Thomas, T. M.; Wasinger, V.; Rylatt, D. B. Depletion of the Highly Abundant Protein Albumin from Human Plasma Using the Gradiflow. Proteomics 2003, 3, 279–287.CrossRefGoogle Scholar
  10. 10.
    Pieper, R.; Su, Q.; Gatlin, C. L.; Huang, S. T.; Anderson, N. L.; Steiner, S. Multi-Component Immunoaffinity Subtraction Chromatography: An Innovative Step Towards a Comprehensive Survey of the Human Plasma Proteome. Proteomics 2003, 3, 422–432.CrossRefGoogle Scholar
  11. 11.
    Liotta, L. A.; Ferrari, M.; Petricoin, E. Clinical Proteomics: Written in Blood. Nature 2003, 425, 905.CrossRefGoogle Scholar
  12. 12.
    Petricoin, E. F.; Ardekani, A. M.; Hitt, B. A.; Levine, P. J.; Fusaro, V. A.; Steinberg, S. M.; Mills, G. B.; Simone, C.; Fishman, D. A.; Kohn, E. C.; Liotta, L. A. Use of Proteomic Patterns in Serum to Identify Ovarian Cancer. Lancet 2002, 359, 572–577.CrossRefGoogle Scholar
  13. 13.
    Basso, D.; Valerio, A.; Brigato, L.; Panozzo, M. P.; Miola, M.; Lucca, T.; Ujka, F.; Zaninotto, M.; Avogaro, A.; Plebani, M. An Unidentified Pancreatic Cancer Cell Product Alters Some Intracellular Pathways of Glucose Metabolism in Isolated Rat Hepatocytes. Pancreas 1997, 15, 132–138.CrossRefGoogle Scholar
  14. 14.
    Rubin, R. B.; Merchant, M. A Rapid Protein Profiling System that Speeds Study of Cancer and other Diseases. Am. Clin. Lab. 2000, 19, 28–29.Google Scholar
  15. 15.
    Yao, X.; Freas, A.; Ramirez, J.; Demirev, P. A.; Fenselau, C. Proteolytic 18O Labeling for Comparative Proteomics: Model Studies with Two Serotypes of Adenovirus. Anal. Chem. 2001, 73, 2836–2842.CrossRefGoogle Scholar
  16. 16.
    Schnolzer, M.; Jedrzejewski, P.; Lehmann, W. D. Protease-Catalyzed Incorporation of 18O into Peptide Fragments and its Application for Protein Sequencing by Electrospray and Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Electrophoresis 1996, 17, 945–953.CrossRefGoogle Scholar
  17. 17.
    Rose, K.; Simona, M. G.; Offord, R. E.; Prior, C. P.; Otto, B.; Thatcher, D. R. A New Mass-Spectrometric C-Terminal Sequencing Technique Finds a Similarity Between γ-Interferon and α2-Interferon and Identifies a Proteolytically Clipped γ-Interferon that Retains Full Antiviral Activity. Biochem. J. 1983, 215, 273–277.Google Scholar
  18. 18.
    Chan, K. C.; Lucas, D. A.; Hise, D.; Schaefer, C. F.; Xiao, Z.; Janini, G. M.; Buetow, K. H.; Issaq, H. J.; Veenstra, T. D.; Conrads, T. P. Analysis of the Human Serum Proteome. Clin. Proteom. 2004, 1, 101–226.CrossRefGoogle Scholar
  19. 19.
    Shen, Y.; Jacobs, J. M.; Camp, D. G. II; Fang, R.; Moore, R. J.; Smith, R. D.; Xiao, W.; Davis, R. W.; Tompkins, R. G. Ultra-High-Efficiency Strong Cation Exchange LC/RPLC/MS/MS for High Dynamic Range Characterization of the Human Plasma Proteome. Anal. Chem. 2004, 76, 1134–1144.CrossRefGoogle Scholar
  20. 20.
    Anderson, N. L.; Polanski, M.; Pieper, R.; Gatlin, T.; Tirumalai, R. S.; Conrads, T. P.; Veenstra, T. D.; Adkins, J. N.; Pounds, J. G.; Fagan, R.; Lobley, A. The Human Plasma Proteome: A Nonredundant List Developed by Combination of Four Separate Sources. Mol. Cell. Proteom. 2004, 3, 311–326.CrossRefGoogle Scholar
  21. 21.
    Zhang, Z.; Bast, R. C., Jr.; Yu, Y.; Li, J.; Sokoll, L. J.; Rai, A. J.; Rosenzweig, J. M.; Cameron, B.; Wang, Y. Y.; Meng, X. Y.; Berchuck, A.; Van Haaften-Day, C.; Hacker, N. F.; de Bruijn, H. W.; van der Zee, A. G.; Jacobs, I. J.; Fung, E. T.; Chan, D. W. Three Biomarkers Identified from Serum Proteomic Analysis for the Detection of Early Stage Ovarian Cancer. Cancer Res. 2004, 64, 5882–5890.CrossRefGoogle Scholar
  22. 22.
    Zelvyte, I.; Wallmark, A.; Piitulainen, E.; Westin, U.; Janciauskiene, S. Increased Plasma Levels of Serine Proteinase Inhibitors in Lung Cancer Patients. Anticancer Res. 2004, 24, 241–247.Google Scholar
  23. 23.
    Blonder, J.; Conrads, T. P.; Yu, L. R.; Terunuma, A.; Janini, G. M.; Issaq, H. J.; Vogel, J. C.; Veenstra, T. D. A Detergent-and Cyanogen Bromide-Free Method for Integral Membrane Proteomics: Application to Halobacterium Purple Membranes and the Human Epidermal Membrane Proteome. Proteomics 2004, 4, 31–45.CrossRefGoogle Scholar
  24. 24.
    Senger, D. R.; Galli, S. J.; Dvorak, A. M.; Perruzzi, C. A.; Harvey, V. S.; Dvorak, H. F. Tumor Cells Secrete A Vascular Permeability Factor That Promotes Accumulation Of Ascites Fluid. Science 1983, 219, 983–985.CrossRefGoogle Scholar
  25. 25.
    Hiratsuka, S.; Nakamura, K.; Iwai, S.; Murakami, M.; Itoh, T.; Kijima, H.; Shipley, J. M.; Senior, R. M.; Shibuya, M. MMP9 Induction by Vascular Endothelial Growth Factor Receptor-1 is Involved in Lung-Specific Metastasis. Cancer Cell 2002, 2, 289–300.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2005

Authors and Affiliations

  • Brian L. Hood
    • 1
  • David A. Lucas
    • 1
  • Grace Kim
    • 1
  • King C. Chan
    • 1
  • Josip Blonder
    • 1
  • Haleem J. Issaq
    • 1
  • Timothy D. Veenstra
    • 1
  • Thomas P. Conrads
    • 1
  • Ingrid Pollet
    • 2
  • Aly Karsan
    • 2
  1. 1.Laboratory of Proteomics and Analytical Technologies, National Cancer Institute at FrederickSAIC-Frederick, Inc.FrederickUSA
  2. 2.British Columbia Cancer Research CenterVancouverCanada

Personalised recommendations