Fragmentation of negative ions from carbohydrates: Part 3. Fragmentation of hybrid and complex N-linked glycans

  • David J. HarveyEmail author


Hybrid and complex N-linked glycans were ionized by electrospray in the presence of ammonium nitrate to give [M +NO3] and [M +(NO3)2]2− ions. Low energy collision-induced decomposition (CID) spectra of both types of ions were almost identical and were dominated by C-type glycosidic and cross-ring fragments, unlike the corresponding spectra of the positive ions that contained mainly B- and Y-type glycosidic fragments. Also, in contrast to fragments in the positive ion spectra, many of these ions appeared to be produced by single pathways following proton abstraction from specific hydroxy groups. Consequently, many ions were diagnostic for specific structural features. Such features included the composition of each of the two antennas, the presence or absence of a bisecting GlcNAc residue, and the location of fucose residues on the core GlcNAc residues and on the antennas. C-ions defined the sequence of the constituent monosaccharide residues. Detailed fragmentation mechanisms are proposed to account for several of the diagnostic ions.


Sialic Acid GlcNAc Fucose Sialic Acid Residue GlcNAc Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Varki, A. Biological roles of oligosaccharides: All of the theories are correct. Glycobiology 1993, 3, 97–130.CrossRefGoogle Scholar
  2. 2.
    Dwek, R. A. Glycobiology: Towards understanding the function of sugars. Chem. Rev. 1996, 96, 683–720.CrossRefGoogle Scholar
  3. 3.
    Dwek, R. A.; Edge, C. J.; Harvey, D. J.; Wormald, M. R.; Parekh, R. B. Analysis of glycoprotein-associated oligosaccharides. Ann. Rev. Biochem. 1993, 62, 65–100.CrossRefGoogle Scholar
  4. 4.
    Rudd, P. M.; Dwek, R. A. Rapid, sensitive sequencing of oligosaccharides from glycoproteins. Curr. Opin. Biotechnol. 1997, 8, 488–497.CrossRefGoogle Scholar
  5. 5.
    Rudd, P. M.; Guile, G. R.; Küster, B.; Harvey, D. J.; Opdenakker, G.; Dwek, R. A. Oligosaccharide sequencing technology. Nature 1997, 388, 205–207.CrossRefGoogle Scholar
  6. 6.
    Rudd, P. M.; Colominas, C.; Royle, L.; Murphy, N.; Hart, E.; Merry, A. H.; Hebestreit, H. F.; Dwek, R. A. A high-performance liquid chromatography based strategy for rapid, sensitive sequencing of N-linked oligosaccharide modifications to proteins in sodium dodecyl sulphate polyacrylamide electrophoresis gel bands. Proteomics 2001, 1, 285–294.CrossRefGoogle Scholar
  7. 7.
    Sutton, C. W.; O’Neill, J. A.; Cottrell, J. S. Site-specific characterization of glycoprotein carbohydrates by exoglycosidase digestion and laser desorption mass spectrometry. Anal. Biochem. 1994, 218, 34–46.CrossRefGoogle Scholar
  8. 8.
    Harvey, D. J.; Rudd, P. M.; Bateman, R. H.; Bordoli, R. S.; Howes, K.; Hoyes, J. B.; Vickers, R. G. Examination of complex oligosaccharides by matrix-assisted laser desorption/ionization mass spectrometry on time-of-flight and magnetic sector instruments. Org. Mass Spectrom. 1994, 29, 753–765.CrossRefGoogle Scholar
  9. 9.
    Zaia, J. Mass spectrometry of oligosaccharides. Mass Spectrom. Rev. 2004, 23, 161–227.CrossRefGoogle Scholar
  10. 10.
    Wheeler, S. F.; Harvey, D. J. Negative ion mass spectrometry of sialylated carbohydrates: Discrimination of N-acetylneuraminic acid linkages by matrix-assisted laser desorption/ionization-time-of-flight and electrospray-time-of-flight mass spectrometry. Anal. Chem. 2000, 72, 5027–5039.CrossRefGoogle Scholar
  11. 11.
    Chai, W.; Piskarev, V.; Lawson, A. M. Negative-ion electrospray mass spectrometry of neutral underivatized oligosaccharides. Anal. Chem. 2001, 73, 651–657.CrossRefGoogle Scholar
  12. 12.
    Pfenninger, A.; Karas, M.; Finke, B.; Stahl, B. Structural analysis of underivatized neutral human milk oligosaccharides in the negative ion mode by nano-electrospray MSn; Part 1. Methodology. J. Am. Soc. Mass Spectrom. 2002, 13, 1331–1340.CrossRefGoogle Scholar
  13. 13.
    Pfenninger, A.; Karas, M.; Finke, B.; Stahl, B. Structural analysis of underivatized neutral human milk oligosaccharides in the negative ion mode by nano-electrospray MSn; Part 2. Application to isomeric mixtures. J. Am. Soc. Mass Spectrom. 2002, 13, 1341–1348.CrossRefGoogle Scholar
  14. 14.
    Chai, W.; Piskarev, V.; Lawson, A. M. Branching pattern and sequence analysis of underivatized oligosaccharides by combined MS/MS of singly and doubly charged molecular ions in negative-ion electrospray mass spectrometry. J. Am. Soc. Mass Spectrom. 2002, 13, 670–679.CrossRefGoogle Scholar
  15. 15.
    Quéméner, B.; Désiré, C.; Lahaye, M.; Debrauwer, L.; Negroni, L. Structural characterization of both positive- and negative-ion electrospray mass spectrometry of partially methyl-esterified oligogalacturonides purified by semi-preparative high-performance anion-exchange chromatography. Eur. J. Mass. Spectrom. 2003, 9, 45–60.CrossRefGoogle Scholar
  16. 16.
    Sagi, D.; Peter-Katalinic, J.; Conradt, H. S.; Nimtz, M. Sequencing of tri- and tetra-antennary N-glycans containing sialic acid by negative mode ESI QTOF tandem MS. J. Am. Soc. Mass Spectrom. 2002, 13, 1138–1148.CrossRefGoogle Scholar
  17. 17.
    Harvey, D. J. Fragmentation of negative ions from carbohydrates; Part 1. Use of nitrate and other anionic adducts for the production of negative ion electrospray spectra from N-linked carbohydrates. J. Am. Soc. Mass Spectrom. 2005, 16, 622–630.CrossRefGoogle Scholar
  18. 18.
    Harvey, D. J. Fragmentation of negative ions from carbohydrates; Part 2. Fragmentation of high-mannose N-linked glycans. J. Am. Soc. Mass Spectrom. 2005, 16, 631–646.CrossRefGoogle Scholar
  19. 19.
    Patel, T.; Bruce, J.; Merry, A.; Bigge, C.; Wormald, M.; Jaques, A.; Parekh, R. Use of hydrazine to release in intact and unreduced form both N- and O-linked oligosaccharides from glycoproteins. Biochemistry 1993, 32, 679–693.CrossRefGoogle Scholar
  20. 20.
    Wing, D. R.; Field, M. C.; Schmitz, B.; Thor, G.; Dwek, R. A.; Schachner, M. S.; Rademacher, T. W. The use of large-scale hydrazinolysis in the preparation of N-linked oligosaccharide libraries: Application to brain tissue. Glycoconj. J. 1992, 9, 293–301.CrossRefGoogle Scholar
  21. 21.
    de Waard, P.; Koorevaar, A.; Kamerling, J. P.; Vliegenthart, J. F. G. Structure determination by 1H NMR spectroscopy of (sulfated) sialylated N-linked carbohydrate chains released from porcine thyroglobulin by peptide-N 4-(N-acetyl-β-glucosaminyl)asparagine amidase-F. J. Biol. Chem. 1991, 266, 4237–4243.Google Scholar
  22. 22.
    Kamerling, J. P.; Rijkse, I.; Maas, A. A. M.; van Kuik, J. A.; Vliegenthart, J. F. G. Sulfated N-linked carbohydrate chains in porcine thyroglobulin. FEBS Letts. 1988, 241, 246–250.CrossRefGoogle Scholar
  23. 23.
    Da Silva, M. L. C.; Stubbs, H. J.; Tamura, T.; Rice, K. G. 1H-NMR characterization of a hen ovalbumin tyrosinamide N-linked oligosaccharide library. Arch. Biochem. Biophys. 1995, 318, 465–475.CrossRefGoogle Scholar
  24. 24.
    Harvey, D. J.; Wing, D. R.; Küster, B.; Wilson, I. B. H. Composition of N-linked carbohydrates from ovalbumin and co-purified glycoproteins. J. Am. Soc. Mass Spectrom. 2000, 11, 564–571.CrossRefGoogle Scholar
  25. 25.
    Green, E. D.; Adelt, G.; Baenziger, J. U.; Wilson, S.; van Halbeek, H. The asparagine-linked oligosaccharides on bovine fetuin. Structural analysis of N-glycanase-released oligosaccharides by 500-Megahertz 1H-NMR spectroscopy. J. Biol. Chem. 1988, 263, 18253–18268.Google Scholar
  26. 26.
    Fournet, B.; Montreuil, J.; Strecker, G.; Dorland, L.; Haverkamp, J.; Vliegenthart, J. F. G.; Binette, J. P.; Schmid, K. Determination of the primary structures of 16 asialo-carbohydrate units derived from human plasma α1-acid glycoprotein by 360 MHz 1H NMR spectroscopy and permethylation analysis. Biochemistry 1978, 17, 5206–5214.CrossRefGoogle Scholar
  27. 27.
    Powell, A. K.; Harvey, D. J. Stabilization of sialic acids in N-linked oligosaccharides and gangliosides for analysis by positive ion matrix-assisted laser desorption-ionization mass spectrometry. Rapid Commun. Mass Spectrom. 1996, 10, 1027–1032.CrossRefGoogle Scholar
  28. 28.
    Domon, B.; Costello, C. E. A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj. J. 1988, 5, 397–409.CrossRefGoogle Scholar
  29. 29.
    Harvey, D. J.; Martin, R. L.; Jackson, K. A.; Sutton, C. W. Fragmentation of N-linked glycans with a MALDI-ion trap time-of-flight mass spectrometer. Rapid Commun. Mass Spectrom. 2004, 18, 2997–3007.CrossRefGoogle Scholar
  30. 30.
    Guile, G. R.; Harvey, D. J.; O’Donnell, N.; Powell, A. K.; Hunter, A. P.; Zamze, S.; Fernandes, D. L.; Dwek, R. A.; Wing, D. R. Identification of highly fucosylated N-linked oligosaccharides from the human parotid gland. Eur. J. Biochem. 1998, 258, 623–656.CrossRefGoogle Scholar
  31. 31.
    Gillece-Castro, B. L.; Prakobphol, A.; Burlingame, A. L.; Leffler, H.; Fisher, S. J. Structure and bacterial receptor activity of a human salivary proline-rich glycoprotein. J. Biol. Chem. 1991, 266, 17358–17368.Google Scholar
  32. 32.
    Dell, A.; Thomas-Oates, J. E. Fast atom bombardment-mass spectrometry (FAB-MS): Sample preparation and analytical strategies. In Analysis of Carbohydrates by GLC and MS; Biermann C. J.; McGinnis, G. D., Eds.; CRC Press: Boca Raton, 1989; pp 217–235.Google Scholar
  33. 33.
    Garozzo, D.; Impallomeni, G.; Montaudo, G.; Spina, E. Structure of underivatized branched oligosaccharides by negative-ion fast-atom bombardment mass spectrometry. Rapid Commun. Mass Spectrom. 1992, 6, 550–552.CrossRefGoogle Scholar
  34. 34.
    Domon, B.; Müller, D. R.; Richter, W. J. High performance tandem mass spectrometry for sequence, branching and interglycosidic linkage analysis of peracetylated oligosaccharides. Biomed. Environ. Mass Spectrom. 1990, 19, 390–392.CrossRefGoogle Scholar
  35. 35.
    Egge, H.; Peter-Katalinic, J. Fast atom bombardment mass spectrometry for structural elucidation of glycoconjugates. Mass Spectrom. Rev. 1987, 6, 331–393.CrossRefGoogle Scholar
  36. 36.
    Laine, R. A.; Yoon, E.; Mahier, T. J.; Abbas, S.; de Lappe, B.; Jain, R.; Matta, K. Non-reducing terminal linkage position determination in intact and permethylated synthetic oligosaccharides having a penultimate amino sugar: Fast atom bombardment ionization, collision-induced dissociation and tandem mass spectrometry. Biol. Mass Spectrom. 1991, 20, 505–514.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2005

Authors and Affiliations

  1. 1.Department of Biochemistry, Glycobiology InstituteUniversity of OxfordOxfordUnited Kingdom

Personalised recommendations