Fragmentation of negative ions from carbohydrates: Part 2. Fragmentation of high-mannose N-linked glycans

  • David J. HarveyEmail author


[M +NO3] And [M +(NO3)2]2− ions were produced by electrospray from neutral high-mannose ([Man]5–9[GlcNAc]2, [Glc]1–3[Man]4–9[GlcNAc]2) N-linked glycans and their 2-aminobenzamide derivatives sprayed from methanol:water containing ammonium nitrate. Low energy collision-induced decomposition (CID) spectra of both types of ions were almost identical and dominated by cross-ring and C-type fragments, unlike the corresponding spectra of the positive ions that contained mainly B- and Y-type glycosidic fragments. This behavior could be rationalized by an initial proton abstraction from various hydroxy groups by the initially-formed anionic adduct. These negative ion spectra were more informative than the corresponding positive ion spectra and contained prominent ions that were diagnostic of structural features such as the composition of individual antennas that were not easily obtainable by other means. C-ions defined the sequence of the constituent monosaccharide residues. Detailed fragmentation mechanisms are proposed to account for many of the diagnostic ions.


GlcNAc Mannose Residue Picolinyl GlcNAc Residue Nitrate Adduct 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Wheeler, S. F.; Harvey, D. J. Negative ion mass spectrometry of sialylated carbohydrates: Discrimination of N-acetylneuraminic acid linkages by matrix-assisted laser desorption/ionization-time-of-flight and electrospray-time-of-flight mass spectrometry. Anal. Chem. 2000, 72, 5027–5039.CrossRefGoogle Scholar
  2. 2.
    Chai, W.; Piskarev, V.; Lawson, A. M. Negative-ion electrospray mass spectrometry of neutral underivatized oligosaccharides. Anal. Chem. 2001, 73, 651–657.CrossRefGoogle Scholar
  3. 3.
    Pfenninger, A.; Karas, M.; Finke, B.; Stahl, B. Structural analysis of underivatized neutral human milk oligosaccharides in the negative ion mode by nano-electrospray MSn (Part 1: Methodology). J. Am. Soc. Mass Spectrom. 2002, 13, 1331–1340.CrossRefGoogle Scholar
  4. 4.
    Pfenninger, A.; Karas, M.; Finke, B.; Stahl, B. Structural analysis of underivatized neutral human milk oligosaccharides in the negative ion mode by nano-electrospray MSn (Part 2: Application to isomeric mixtures). J. Am. Soc. Mass Spectrom. 2002, 13, 1341–1348.CrossRefGoogle Scholar
  5. 5.
    Chai, W.; Piskarev, V.; Lawson, A. M. Branching pattern and sequence analysis of underivatized oligosaccharides by combined MS/MS of singly and doubly charged molecular ions in negative-ion electrospray mass spectrometry. J. Am. Soc. Mass Spectrom. 2002, 13, 670–679.CrossRefGoogle Scholar
  6. 6.
    Quéméner, B.; Désiré, C.; Lahaye, M.; Debrauwer, L.; Negroni, L. Structural characterization of both positive- and negative-ion electrospray mass spectrometry of partially methyl-esterified oligogalacturonides purified by semi-preparative high-performance anion-exchange chromatography. Eur. J. Mass. Spectrom 2003, 9, 45–60.CrossRefGoogle Scholar
  7. 7.
    Sagi, D.; Peter-Katalinic, J.; Conradt, H. S.; Nimtz, M. Sequencing of tri- and tetra-antennary N-glycans containing sialic acid by negative mode ESI Q-TOF tandem MS. J. Am. Soc. Mass Spectrom. 2002, 13, 1138–1148.CrossRefGoogle Scholar
  8. 8.
    Wong, A. W.; Cancilla, M. T.; Voss, L. R.; Lebrilla, C. B. Anion dopant for oligosaccharides in matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 1999, 71, 205–211.CrossRefGoogle Scholar
  9. 9.
    Wong, A. W.; Wang, H.; Lebrilla, C. B. Selection of anionic dopant for quantifying desialylation reactions with MALDI-FTMS. Anal. Chem. 2000, 72, 1419–1425.CrossRefGoogle Scholar
  10. 10.
    Cai, Y.; Concha, M. C.; Murray, J. S.; Cole, R. B. Evaluation of the role of multiple hydrogen bonding in offering stability to negative ion adducts in electrospray mass spectrometry. J. Am. Soc. Mass Spectrom. 2002, 13, 1360–1369.CrossRefGoogle Scholar
  11. 11.
    Cole, R. B.; Zhu, J. Chloride ion attachment in negative ion electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 1999, 13, 607–611.CrossRefGoogle Scholar
  12. 12.
    Zhu, J.; Cole, R. B. Formation and decomposition of chloride adduct ions, [M +Cl], in negative ion electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 2000, 11, 932–941.CrossRefGoogle Scholar
  13. 13.
    Zhu, J.; Cole, R. B. Ranking of gas-phase acidities and chloride affinities of monosaccharides and linkage specificity in collision-induced decompositions of negative ion electrospray-generated chloride adducts of oligosaccharides. J. Am. Soc. Mass Spectrom. 2001, 12, 1193–1204.CrossRefGoogle Scholar
  14. 14.
    Cai, Y.; Jiang, Y.; Cole, R. B. Anionic adducts of oligosaccharides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Chem. 2003, 75, 1638–1644.CrossRefGoogle Scholar
  15. 15.
    Harvey, D. J. Fragmentation of negative ions from carbohydrates: Part 1. Use of nitrate adducts for the production of negative ion electrospray spectra from N-linked carbohydrates. J. Am. Soc. Mass Spectrom. 2005, 16, 622–630.CrossRefGoogle Scholar
  16. 16.
    Patel, T.; Bruce, J.; Merry, A.; Bigge, C.; Wormald, M.; Jaques, A.; Parekh, R. Use of hydrazine to release in intact and unreduced form both N- and O-linked oligosaccharides from glycoproteins. Biochemistry 1993, 32, 679–693.CrossRefGoogle Scholar
  17. 17.
    Wing, D. R.; Field, M. C.; Schmitz, B.; Thor, G.; Dwek, R. A.; Schachner, M. S.; Rademacher, T. W. The use of large-scale hydrazinolysis in the preparation of N-linked oligosaccharide libraries: Application to brain tissue. Glycoconjugate J. 1992, 9, 293–301.CrossRefGoogle Scholar
  18. 18.
    Da Silva, M. L. C.; Stubbs, H. J.; Tamura, T.; Rice, K. G. 1H-NMR characterization of a hen ovalbumin tyrosinamide N-linked oligosaccharide library. Arch. Biochem. Biophys. 1995, 318, 465–475.CrossRefGoogle Scholar
  19. 19.
    Harvey, D. J.; Wing, D. R.; Küster, B.; Wilson, I. B. H. Composition of N-linked carbohydrates from ovalbumin and co-purified glycoproteins. J. Am. Soc. Mass Spectrom. 2000, 11, 564–571.CrossRefGoogle Scholar
  20. 20.
    Fu, D.; Chen, L.; O’Neill, R. A. A detailed structural characterization of ribonuclease B oligosaccharides by 1H NMR spectroscopy and mass spectrometry. Carbohydr. Res. 1994, 261, 173–186.CrossRefGoogle Scholar
  21. 21.
    de Waard, P.; Koorevaar, A.; Kamerling, J. P.; Vliegenthart, J. F. G. Structure determination by 1H NMR spectroscopy of (sulfated) sialylated N-linked carbohydrate chains released from porcine thyroglobulin by peptide-N 4-(N-acetyl-β-glucosaminyl)asparagine amidase-F. J. Biol. Chem. 1991, 266, 4237–4243.Google Scholar
  22. 22.
    Kamerling, J. P.; Rijkse, I.; Maas, A. A. M.; van Kuik, J. A.; Vliegenthart, J. F. G. Sulfated N-linked carbohydrate chains in porcine thyroglobulin. FEBS Letts. 1988, 241, 246–250.CrossRefGoogle Scholar
  23. 23.
    Bigge, J. C.; Patel, T. P.; Bruce, J. A.; Goulding, P. N.; Charles, S. M.; Parekh, R. B. Nonselective and efficient fluorescent labeling of glycans using 2-aminobenzamide and anthranilic acid. Anal. Biochem. 1995, 230, 229–238.CrossRefGoogle Scholar
  24. 24.
    Domon, B.; Costello, C. E. A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj. J. 1988, 5, 397–409.CrossRefGoogle Scholar
  25. 25.
    Hardy, M. R.; Townsend, R. R. High-pH anion exchange chromatography of glycoprotein-derived carbohydrates. Methods Enzymol. 1994, 230, 208–225.CrossRefGoogle Scholar
  26. 26.
    Carroll, J. A.; Willard, D.; Lebrilla, C. B. Energetics of cross-ring cleavages and their relevance to the linkage determination of oligosaccharides. Anal. Chim. Acta 1995, 307, 431–447.CrossRefGoogle Scholar
  27. 27.
    Saad, O. M.; Leary, J. A. Delineating mechanisms of dissociation for iosmeric heparin disaccharides using isotope labeling and ion trap tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 2004, 15, 1274–1286.CrossRefGoogle Scholar
  28. 28.
    Neuberger, A.; Wilson, B. M. The separation of glycosides on a strongly basic ion-exchange resin: An interpretation in terms of acidity. Carbohydr. Res. 1971, 17, 89–95.CrossRefGoogle Scholar
  29. 29.
    Harvey, D. J. Fragmentation of negative ions from carbohydrates: Part 3. Fragmentation of hybrid and complex N-linked glycans. J. Am. Soc. Mass Spectrom. 2005, 16, 647–659.CrossRefGoogle Scholar
  30. 30.
    Andersson, B. A.; Holman, R. T. Pyrrolidides for mass spectrometric determination of the position of the double bond in monounsaturated fatty acids. Lipids 1974, 9, 185–190.CrossRefGoogle Scholar
  31. 31.
    Andersson, B. A. Mass Spectrometry of fatty acid pyrrolidides. Prog. Chem. Fats Lipids 1978, 16, 279–308.CrossRefGoogle Scholar
  32. 32.
    Vetter, W.; Meister, W. Nicotinates as derivatives for the mass spectrometric investigations of long chain alcohols. Org. Mass Spectrom. 1981, 16, 118–122.CrossRefGoogle Scholar
  33. 33.
    Harvey, D. J. Picolinyl esters as derivatives for the structural determination of long-chain branched and unsaturated fatty acids. Biomed. Mass Spectrom. 1982, 9, 33–38.CrossRefGoogle Scholar
  34. 34.
    Harvey, D. J. Mass spectrometry of picolinyl and other nitrogen-containing derivatives of lipids. In Advances in Lipid Methodology—One; Christie, W. W., Ed.; Oily Press: Ayr, 1992; pp 19–80.Google Scholar
  35. 35.
    Kingston, D. G. I.; Hobrock, B. W.; Bursey, M. M.; Bursey, J. T. Intramolecular hydrogen transfer in mass spectra. III. Rearrangements involving the loss of small neutral molecules. Chem. Rev. 1975, 75, 693–730.CrossRefGoogle Scholar
  36. 36.
    Sloan, S.; Harvey, D. J.; Vouros, P. Interaction and rearrangement of trimethylsilyloxy functional groups. The structural significance of the m/e 147 ion in the mass spectra of trimethylsilyl steroidal ethers. Org. Mass Spectrom. 1971, 5, 789–799.CrossRefGoogle Scholar
  37. 37.
    Harvey, D. J.; Bateman, R. H.; Green, M. R. High-energy collision-induced fragmentation of complex oligosaccharides ionized by matrix-assisted laser desorption/ionization mass spectrometry. J. Mass Spectrom. 1997, 32, 167–187.CrossRefGoogle Scholar
  38. 38.
    Harvey, D. J.; Martin, R. L.; Jackson, K. A.; Sutton, C. W. Fragmentation of N-linked glycans with a MALDI-ion trap time-of-flight mass spectrometer. Rapid Commun. Mass Spectrom. 2004, 18, 2997–3007.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2005

Authors and Affiliations

  1. 1.Department of Biochemistry, Glycobiology InstituteUniversity of OxfordOxfordUnited Kingdom

Personalised recommendations