Fragmentation of negative ions from carbohydrates: Part 1. Use of nitrate and other anionic adducts for the production of negative ion electrospray spectra from N-linked carbohydrates

Articles

Abstract

Negative ion spectra of N-linked glycans were produced by electrospray from a dilute solution of the glycans and various salts in methanol: water using a Waters-Micromass Q-TOF Ultima Global tandem quadrupole/time-of-flight (Q-TOF) mass spectrometer. Stable anionic adducts were formed with chloride, bromide, iodide, nitrate, sulphate, and phosphate. Unstable adducts that fragmented by a cross-ring cleavage of the reducing N-acetylglucosamine (GlcNAc) residue, were formed with fluoride, nitride, sulphide, carbonate, bicarbonate, hydroxide, and acetate. Nitrate adducts prepared from ammonium nitrate produced the most satisfactory spectra as they were relatively free from in-source fragmentation products and gave signals that were about ten times as strong as those from corresponding [M − H] ions prepared from solutions containing ammonium hydroxide. Detection limits were in the region of 20 fmol. Neutral glycans gave both singly- and doubly-charged ions with the larger glycans preferring the formation of doubly-charged ions. Acidic glycans with several acidic groups gave ions in higher charge states as the result of ionization of the anionic groups. Low energy collision-induced decomposition (CID) spectra of the singly-charged ions were dominated by cross-ring and C-type fragments, unlike the corresponding spectra of the positive ions that contained mainly B- and Y-type glycosidic fragments. Formation of these ions could be rationalized by proton abstraction from various hydroxy groups by an initially-formed anionic adduct. Prominent glycosidic and cross-ring cleavage ions defined structural features such as the specific composition of each of the two antennae, presence of a bisecting GlcNAc residue and location of fucose residues, details that were difficult to determine by conventional techniques. Acidic glycans fragmented differently on account of charge localization on the acid functions rather than the hydroxy groups.

References

  1. 1.
    Varki, A. Biological roles of oligosaccharides: All of the theories are correct. Glycobiology 1993, 3, 97–130.CrossRefGoogle Scholar
  2. 2.
    Dwek, R. A. Glycobiology: Towards understanding the function of sugars. Chem. Rev. 1996, 96, 683–720.CrossRefGoogle Scholar
  3. 3.
    Dwek, R. A.; Edge, C. J.; Harvey, D. J.; Wormald, M. R.; Parekh, R. B. Analysis of glycoprotein-associated oligosaccharides. Ann. Rev. Biochem. 1993, 62, 65–100.CrossRefGoogle Scholar
  4. 4.
    Rudd, P. M.; Dwek, R. A. Rapid, sensitive sequencing of oligosaccharides from glycoproteins. Curr. Opin. Biotechnol. 1997, 8, 488–497.CrossRefGoogle Scholar
  5. 5.
    Rudd, P. M.; Guile, G. R.; Küster, B.; Harvey, D. J.; Opdenakker, G.; Dwek, R. A. Oligosaccharide sequencing technology. Nature 1997, 388, 205–207.CrossRefGoogle Scholar
  6. 6.
    Rudd, P. M.; Colominas, C.; Royle, L.; Murphy, N.; Hart, E.; Merry, A. H.; Hebestreit, H. F.; Dwek, R. A. A high-performance liquid chromatography based strategy for rapid, sensitive sequencing of N-linked oligosaccharide modifications to proteins in sodium dodecyl sulphate polyacrylamide electrophoresis gel bands. Proteomics 2001, 1, 285–294.CrossRefGoogle Scholar
  7. 7.
    Sutton, C. W.; O’Neill, J. A.; Cottrell, J. S. Site-specific characterization of glycoprotein carbohydrates by exoglycosidase digestion and laser desorption mass spectrometry. Anal. Biochem. 1994, 218, 34–46.CrossRefGoogle Scholar
  8. 8.
    Harvey, D. J.; Rudd, P. M.; Bateman, R. H.; Bordoli, R. S.; Howes, K.; Hoyes, J. B.; Vickers, R. G. Examination of complex oligosaccharides by matrix-assisted laser desorption/ionization mass spectrometry on time-of-flight and magnetic sector instruments. Org. Mass Spectrom. 1994, 29, 753–765.CrossRefGoogle Scholar
  9. 9.
    Royle, L.; Mattu, T. S.; Hart, E.; Langridge, J. I.; Merry, A. H.; Murphy, N.; Harvey, D. J.; Dwek, R. A.; Rudd, P. M. An analytical and structural database provides a strategy for sequencing O-glycans from microgram quantities of glycoproteins. Anal. Biochem. 2002, 304, 70–90.CrossRefGoogle Scholar
  10. 10.
    Dell, A. FAB Mass spectrometry of carbohydrates. Adv. Carbohydrate Chem. Biochem. 1987, 45, 19–72.CrossRefGoogle Scholar
  11. 11.
    Dell, A.; Carman, N. H.; Tiller, P. R.; Thomas-Oates, J. E. Fast atom bombardment mass spectrometric strategies for characterizing carbohydrate-containing biopolymers. Biomed. Environ. Mass Spectrom. 1987, 16, 19–24.CrossRefGoogle Scholar
  12. 12.
    Dell, A.; Thomas-Oates, J. E. Fast atom bombardment-mass spectrometry (FAB-MS): Sample preparation and analytical strategies, In Analysis of Carbohydrates by GLC and MS; Biermann, C. J.; McGinnis, G. D., Eds.; CRC Press: Boca Raton, 1989; pp 217–235.Google Scholar
  13. 13.
    Dell, A.; Morris, H. R. Glycoprotein structure determination by mass spectrometry. Science 2001, 291, 2351–2356.CrossRefGoogle Scholar
  14. 14.
    Mock, K. K.; Davy, M.; Cottrell, J. S. The analysis of underivatized oligosaccharides by matrix-assisted laser desorption mass spectrometry. Biochem. Biophys. Res. Commun. 1991, 177, 644–651.CrossRefGoogle Scholar
  15. 15.
    Stahl, B.; Steup, M.; Karas, M.; Hillenkamp, F. Analysis of neutral oligosaccharides by matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 1991, 63, 1463–1466.CrossRefGoogle Scholar
  16. 16.
    Harvey, D. J. Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates. Mass Spectrom. Rev. 1999, 18, 349–451.CrossRefGoogle Scholar
  17. 17.
    Orlando, R.; Bush, C. A.; Fenselau, C. Structural analysis of oligosaccharides by tandem mass spectrometry: Collisional activation of sodium adduct ions. Biomed. Environ. Mass Spectrom. 1990, 19, 747–754.CrossRefGoogle Scholar
  18. 18.
    Spengler, B.; Kirsch, D.; Kaufmann, R.; Lemoine, J. Structure analysis of branched oligosaccharides using post-source decay in matrix-assisted laser desorption/ionization mass spectrometry. J. Mass Spectrom. 1995, 30, 782–787.CrossRefGoogle Scholar
  19. 19.
    Shevchenko, A.; Loboda, A.; Shevchenko, A.; Ens, W.; Standing, K. G. MALDI Quadrupole time-of-flight mass spectrometry: A powerful tool for proteomic research. Anal. Chem. 2000, 72, 2132–2141.CrossRefGoogle Scholar
  20. 20.
    Verhaert, P.; Uttenweiler-Joseph, S.; de Vries, M.; Loboda, A.; Ens, W.; Standing, K. G. Matrix-assisted laser desorption/ionization quadrupole time-of-flight mass spectrometry: An elegant tool for peptidomics. Proteomics 2001, 1, 118–131.CrossRefGoogle Scholar
  21. 21.
    Loboda, A. V.; Krutchinsky, A. N.; Bromirski, M.; Ens, W.; Standing, K. G. A quadrupole/time-of-flight mass spectrometer with a matrix-assisted laser desorption/ionization source: design and performance. Rapid Commun. Mass Spectrom. 2000, 14, 1047–1057.CrossRefGoogle Scholar
  22. 22.
    Harvey, D. J.; Bateman, R. H.; Bordoli, R. S.; Tyldesley, R. Ionization and fragmentation of complex glycans with a Q-TOF mass spectrometer fitted with a MALDI ion source. Rapid Commun. Mass Spectrom. 2000, 14, 2135–2142.CrossRefGoogle Scholar
  23. 23.
    Harvey, D. J. Collision-induced fragmentation of underivatized N-linked carbohydrates ionized by electrospray. J. Mass Spectrom. 2000, 35, 1178–1190.CrossRefGoogle Scholar
  24. 24.
    Reinhold, V. N.; Reinhold, B. B.; Costello, C. E. Carbohydrate molecular weight profiling, sequence, linkage and branching data: ES-MS and CID. Anal. Chem. 1995, 67, 1772–1784.CrossRefGoogle Scholar
  25. 25.
    Harvey, D. J.; Bateman, R. H.; Green, M. R. High-energy collision-induced fragmentation of complex oligosaccharides ionized by matrix-assisted laser desorption/ionization mass spectrometry. J. Mass Spectrom. 1997, 32, 167–187.CrossRefGoogle Scholar
  26. 26.
    Harvey, D. J. N-[2-diethylamino]ethyl-4-aminobenzamide derivatives for high sensitivity mass spectrometric detection and structure determination of N-linked carbohydrates. Rapid Commun. Mass Spectrom. 2000, 14, 862–871.CrossRefGoogle Scholar
  27. 27.
    Harvey, D. J. Electrospray mass spectrometry and collision-induced fragmentation of 2-aminobenzamide-labeled neutral N-linked glycans. Analyst 2000, 125, 609–617.CrossRefGoogle Scholar
  28. 28.
    Harvey, D. J. Electrospray mass spectrometry and fragmentation of N-linked carbohydrates derivatized at the reducing terminus. J. Am. Soc. Mass Spectrom. 2000, 11, 900–915.CrossRefGoogle Scholar
  29. 29.
    Chai, W.; Piskarev, V.; Lawson, A. M. Negative-ion electrospray mass spectrometry of neutral underivatized oligosaccharides. Anal. Chem. 2001, 73, 651–657.CrossRefGoogle Scholar
  30. 30.
    Pfenninger, A.; Karas, M.; Finke, B.; Stahl, B. Structural analysis of underivatized neutral human milk oligosaccharides in the negative ion mode by nano-electrospray MSn (Part 1: Methodology). J. Am. Soc. Mass Spectrom. 2002, 13, 1331–1340.CrossRefGoogle Scholar
  31. 31.
    Pfenninger, A.; Karas, M.; Finke, B.; Stahl, B. Structural analysis of underivatized neutral human milk oligosaccharides in the negative ion mode by nano-electrospray MSn (Part 2: Application to isomeric mixtures). J. Am. Soc. Mass Spectrom. 2002, 13, 1341–1348.CrossRefGoogle Scholar
  32. 32.
    Chai, W.; Piskarev, V.; Lawson, A. M. Branching pattern and sequence analysis of underivatized oligosaccharides by combined MS/MS of singly and doubly charged molecular ions in negative-ion electrospray mass spectrometry. J. Am. Soc. Mass Spectrom. 2002, 13, 670–679.CrossRefGoogle Scholar
  33. 33.
    Quéméner, B.; Désiré, C.; Lahaye, M.; Debrauwer, L.; Negroni, L. Structural characterization of both positive- and negative-ion electrospray mass spectrometry of partially methyl-esterified oligogalacturonides purified by semi-preparative high-performance anion-exchange chromatography. Eur. J. Mass. Spectrom 2003, 9, 45–60.CrossRefGoogle Scholar
  34. 34.
    Sagi, D.; Peter-Katalinic, J.; Conradt, H. S.; Nimtz, M. Sequencing of tri- and tetra-antennary N-glycans containing sialic acid by negative mode ESI QTOF tandem MS. J. Am. Soc. Mass Spectrom. 2002, 13, 1138–1148.CrossRefGoogle Scholar
  35. 35.
    Wheeler, S. F.; Harvey, D. J. Negative ion mass spectrometry of sialylated carbohydrates: Discrimination of N-acetylneuraminic acid linkages by matrix-assisted laser desorption/ionization-time-of-flight and electrospray-time-of-flight mass spectrometry. Anal. Chem. 2000, 72, 5027–5039.CrossRefGoogle Scholar
  36. 36.
    Domon, B.; Costello, C. E. A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj. J. 1988, 5, 397–409.CrossRefGoogle Scholar
  37. 37.
    Harvey, D. J. Fragmentation of negative ions from carbohydrates: Part 2, Fragmentation of high-mannose N-linked glycans. J. Am. Soc. Mass Spectrom. 2005, 16, 631–646.CrossRefGoogle Scholar
  38. 38.
    Harvey, D. J. Fragmentation of negative ions from carbohydrates: Part 3, Fragmentation of hybrid and complex N-linked glycans. J. Am. Soc. Mass Spectrom. 2005, 16, 647–659.CrossRefGoogle Scholar
  39. 39.
    Patel, T.; Bruce, J.; Merry, A.; Bigge, C.; Wormald, M.; Jaques, A.; Parekh, R. Use of hydrazine to release in intact and unreduced form both N- and O-linked oligosaccharides from glycoproteins. Biochemistry 1993, 32, 679–693.CrossRefGoogle Scholar
  40. 40.
    Wing, D. R.; Field, M. C.; Schmitz, B.; Thor, G.; Dwek, R. A.; Schachner, M. S.; Rademacher, T. W. The use of large-scale hydrazinolysis in the preparation of N-linked oligosaccharide libraries: Application to brain tissue. Glycoconj. J. 1992, 9, 293–301.CrossRefGoogle Scholar
  41. 41.
    Fu, D.; Chen, L.; O’Neill, R. A. A detailed structural characterization of ribonuclease B oligosaccharides by 1H NMR spectroscopy and mass spectrometry. Carbohydr. Res. 1994, 261, 173–186.CrossRefGoogle Scholar
  42. 42.
    de Waard, P.; Koorevaar, A.; Kamerling, J. P.; Vliegenthart, J. F. G. Structure determination by 1H NMR spectroscopy of (sulfated) sialylated N-linked carbohydrate chains released from porcine thyroglobulin by peptide-N 4-(N-acetyl-β-glucosaminyl)asparagine amidase-F. J. Biol. Chem. 1991, 266, 4237–4243.Google Scholar
  43. 43.
    Kamerling, J. P.; Rijkse, I.; Maas, A. A. M.; van Kuik, J. A.; Vliegenthart, J. F. G. Sulfated N-linked carbohydrate chains in porcine thyroglobulin. FEBS Letts. 1988, 241, 246–250.CrossRefGoogle Scholar
  44. 44.
    Da Silva, M. L. C.; Stubbs, H. J.; Tamura, T.; Rice, K. G. 1H-NMR characterization of a hen ovalbumin tyrosinamide N-linked oligosaccharide library. Arch. Biochem. Biophys. 1995, 318, 465–475.CrossRefGoogle Scholar
  45. 45.
    Harvey, D. J.; Wing, D. R.; Küster, B.; Wilson, I. B. H. Composition of N-linked carbohydrates from ovalbumin and copurified glycoproteins. J. Am. Soc. Mass Spectrom. 2000, 11, 564–571.CrossRefGoogle Scholar
  46. 46.
    Green, E. D.; Adelt, G.; Baenziger, J. U.; Wilson, S.; van Halbeek, H. The asparagine-linked oligosaccharides on bovine fetuin. Structural analysis of N-glycanase-released oligosaccharides by 500-Megahertz 1H-NMR spectroscopy. J. Biol. Chem. 1988, 263, 18253–18268.Google Scholar
  47. 47.
    Wong, A. W.; Cancilla, M. T.; Voss, L. R.; Lebrilla, C. B. Anion dopant for oligosaccharides in matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 1999, 71, 205–211.CrossRefGoogle Scholar
  48. 48.
    Wong, A. W.; Wang, H.; Lebrilla, C. B. Selection of anionic dopant for quantifying desialylation reactions with MALDI-FTMS. Anal. Chem. 2000, 72, 1419–1425.CrossRefGoogle Scholar
  49. 49.
    Cai, Y.; Concha, M. C.; Murray, J. S.; Cole, R. B. Evaluation of the role of multiple hydrogen bonding in offering stability to negative ion adducts in electrospray mass spectrometry. J. Am. Soc. Mass Spectrom. 2002, 13, 1360–1369.CrossRefGoogle Scholar
  50. 50.
    Cole, R. B.; Zhu, J. Chloride ion attachment in negative ion electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 1999, 13, 607–611.CrossRefGoogle Scholar
  51. 51.
    Zhu, J.; Cole, R. B. Formation and decomposition of chloride adduct ions, [M +Cl], in negative ion electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 2000, 11, 932–941.CrossRefGoogle Scholar
  52. 52.
    Zhu, J.; Cole, R. B. Ranking of gas-phase acidities and chloride affinities of monosaccharides and linkage specificity in collision-induced decompositions of negative ion electrospray-generated chloride adducts of oligosaccharides. J. Am. Soc. Mass Spectrom. 2001, 12, 1193–1204.CrossRefGoogle Scholar
  53. 53.
    Cai, Y.; Jiang, Y.; Cole, R. B. Anionic adducts of oligosaccharides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Chem. 2003, 75, 1638–1644.CrossRefGoogle Scholar
  54. 54.
    Hardy, M. R.; Townsend, R. R. High-pH anion exchange chromatography of glycoprotein-derived carbohydrates. Methods Enzymol. 1994, 230, 208–225.CrossRefGoogle Scholar
  55. 55.
    Naven, T. J. P.; Harvey, D. J. Effect of structure on the signal strength of oligosaccharides in matrix-assisted laser desorption/ionization mass spectrometry on time-of-flight and magnetic sector instruments. Rapid Commun. Mass Spectrom. 1996, 10, 1361–1366.CrossRefGoogle Scholar
  56. 56.
    Harvey, D. J.; Martin, R. L.; Jackson, K. A.; Sutton, C. W. Fragmentation of N-linked glycans with a MALDI-ion trap time-of-flight mass spectrometer. Rapid Commun. Mass Spectrom. 2004, 18, 2997–3007.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2005

Authors and Affiliations

  1. 1.Department of Biochemistry, Glycobiology InstituteUniversity of OxfordOxfordUnited Kingdom

Personalised recommendations