Optimization of a MALDI TOF-TOF mass spectrometer for intact protein analysis

Articles

Abstract

A MALDI TOF-TOF instrument was optimized and evaluated for intact protein analysis by tandem mass spectrometry. Ion source voltages and delay times were adjusted to affect an up to a 10-fold improvement in fragment ion yield compared to data obtained using default settings employed in peptide analysis. For large peptides (3–4.5 kDa), up to 90% of all possible b- and y-fragment ions were observed, which provides sufficient information for de novo sequencing and unambiguous protein identification. Product ion signals associated with preferential cleavages C-terminal to aspartic acid and glutamic acid residues and N-terminal to proline residues became dominant with increased protein molecular weight. Matrix effects were also evaluated and, among the eight matrices examined, α-cyano-4-hydroxycinnamic acid (CHCA) was found to produce the best intact protein tandem mass spectra for proteins up to 12 kDa. Optimized performance yielded detection limits of 50–125 fmol for proteins of 4 and 12 kDa, respectively. This improved performance has yielded an instrument with potential to be a useful tool in proteomic investigations via analysis of intact proteins.

References

  1. 1.
    Karas, M.; Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 1988, 60, 2299–2301.CrossRefGoogle Scholar
  2. 2.
    Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T. Protein and plolymer analyses up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 1988, 2, 151–153.CrossRefGoogle Scholar
  3. 3.
    Hillenkamp, F.; Karas, M.; Beavis, R. C.; Chait, B. T. Matrix-assisted laser desorption/ionization of biopolymers. Anal. Chem. 1991, 63, 1193A-1203A.CrossRefGoogle Scholar
  4. 4.
    Fenn, J.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray ionization for mass spectrometry of large biomelecues. Science 1989, 246, 64–71.CrossRefGoogle Scholar
  5. 5.
    Ferguson, P. L.; Smith, R. D. Proteome analysis by mass spectrometry. Annu. Rev. Biophys. Biomol. Struct. 2003, 32, 399–424.CrossRefGoogle Scholar
  6. 6.
    Ong, S. E.; Pandey, A. An evaluation of the use of two-dimensional gel electrophoresis in proteomics. Biomol. Eng. 2002, 18, 195–205.CrossRefGoogle Scholar
  7. 7.
    Medzihradszky, K. F.; Campbell, J. M.; Baldwin, M. A.; Falick, A. M.; Juhasz, P.; Vestal, M. L.; Burlingame, A. L. The characteristics of peptide collision-induced dissociation using a high-performance MALDI-TOF/TOF tandem mass spectrometer. Anal. Chem. 2000, 72, 552–558.CrossRefGoogle Scholar
  8. 8.
    Zubarev, R. A.; Kelleher, N. L.; McLafferty, F. W. Electron capture dissociation of multiply charged protein cations. A nonergodic process. J. Am. Chem. Soc. 1998, 120, 3265–3266.CrossRefGoogle Scholar
  9. 9.
    Reid, G. E.; McLuckey, S. A. “Top down” protein characterization via tandem mass spectrometry. J. Mass Spectrom. 2002, 37, 663–675.CrossRefGoogle Scholar
  10. 10.
    Ge, Y.; Lawhorn, B. G.; El Naggar, M.; Strauss, E.; Park, J. H.; Begley, T. P.; McLafferty, F. W. Top down characterization of larger proteins (45 kDa) by electron capture dissociation mass spectrometry. J. Am. Chem. Soc. 2002, 124, 672–678.CrossRefGoogle Scholar
  11. 11.
    Horn, D. M.; Zubarev, R. A.; McLafferty, F. W. Automated de novo sequencing of proteins by tandem high-resolution mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 10313–10317.CrossRefGoogle Scholar
  12. 12.
    Horn, D. M.; Ge, Y.; McLafferty, F. W. Activated ion electron capture dissociation for mass spectral sequencing of larger (42 kDa) proteins. Anal. Chem. 2000, 72, 4778–4784.CrossRefGoogle Scholar
  13. 13.
    Gross, M. L.; Tomer, K. B.; Cerny, R. L.; Giblin, D. E. FAB and tandem MS for structure determination of biomolecules: Success to m/z 2000 and prospects for higher mass. In Mass Spectrometry in the Analysis of Large Molecules; McNeal, C. J., Ed.; John Wiley and Sons: Chichester, 1986; pp 171–190.Google Scholar
  14. 14.
    Neumann, G. M.; Derrick, P. J. Energy transfer in the collision induced decomposition of peptide ions formed by field desorption. Org. Mass Spectrom. 1984, 19, 165–170.CrossRefGoogle Scholar
  15. 15.
    Feng, R.; Konishi, Y. Collisionally-activated dissociation of multiply charged 150 kDa antibody ions. Anal. Chem. 1993, 65, 650–652.CrossRefGoogle Scholar
  16. 16.
    Brown, R. S.; Lennon, J. J. Sequence-specific fragmentation of matrix-assisted laser-desorbed protein peptide ions. Anal. Chem. 1995, 67, 3990–3999.CrossRefGoogle Scholar
  17. 17.
    Katta, V.; Chow, D. T.; Rohde, M. F. Applications of in-source fragmentation of protein ions for direct sequence analysis by delayed extraction MALDI-TOF mass spectrometry. Anal. Chem. 1998, 70, 4410–4416.CrossRefGoogle Scholar
  18. 18.
    Lennon, J. J.; Walsh, K. A. Direct sequence analysis of proteins by in-source fragmentation during delayed ion extraction. Prot. Sci. 1997, 6, 2446–2453.CrossRefGoogle Scholar
  19. 19.
    Takayama, M.; Tsugita, A. Sequence information of peptides and proteins with in-source decay in matrix assisted laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis 2000, 21, 1670–1677.CrossRefGoogle Scholar
  20. 20.
    Takayama, M. In-source decay characteristics of peptides in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Am. Soc. Mass Spectrom. 2001, 12, 420–427.CrossRefGoogle Scholar
  21. 21.
    Takayama, M.; Tsugita, A. Does in-source decay occur independent of the ionization process in matrix-assisted laser desorption? Int. J. Mass Spectrom. 1998, 181, L1-L6.CrossRefGoogle Scholar
  22. 22.
    Yu, W.; Vath, J. E.; Huberty, M. C.; Martin, S. A. Identification of the facile gas-phase cleavage of the Asp—Pro and Asp—Xxx peptide bonds in matrix-assisted laser desorption time-of-flight mass spectrometry. Anal. Chem. 1993, 65, 3015–3023.CrossRefGoogle Scholar
  23. 23.
    Suckau, D.; Resemann, A.; Schuerenberg, M.; Hufnagel, P.; Franzen, J.; Holle, A. A novel MALDI LIFT-TOF/TOF mass spectrometer for proteomics. Anal. Bioanal. Chem. 2003, 376, 952–965.CrossRefGoogle Scholar
  24. 24.
    Suckau, D.; Resemann, A. T-3-sequencing: Targeted characterization of the N- and C-termini of undigested proteins by mass spectrometry. Anal. Chem. 2003, 75, 5817–5824.CrossRefGoogle Scholar
  25. 25.
    Lin, M.; Campbell, J. M.; Mueller, D. R.; Wirth, U. Intact protein analysis by matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2003, 17, 1809–1814.CrossRefGoogle Scholar
  26. 26.
    Qin, J.; Chait, B. T. Collision-induced dissociation of singly charged peptide ions in a matrix-assisted laser desorption ionization ion trap mass spectrometer. Int. J. Mass Spectrom. 1999, 190/191, 313–320.CrossRefGoogle Scholar
  27. 27.
    Yergey, A. L.; Coorssen, J. R.; Backlund, P. S.; Blank, P. S.; Humphrey, G. A.; Zimmerberg, J.; Campbell, J. M.; Vestal, M. L. De novo sequencing of peptides using MALDI/TOF-TOF. J. Am. Soc. Mass Spectrom. 2002, 13, 784–791.CrossRefGoogle Scholar
  28. 28.
    Brown, R. S.; Lennon, J. J. Mass resolution improvement by incorporation of pulsed ion extraction in a matrix-assisted laser-desorption ionization linear time-of-flight mass-spectrometer. Anal. Chem. 1995, 67, 1998–2003.CrossRefGoogle Scholar
  29. 29.
    Wang, B. H.; Dreisewerd, K.; Bahr, U.; Karas, M.; Hillenkamp, F. Gas-phase cationization and protonation of neutrals generated by matrix-assisted saser desorption. J. Am. Soc. Mass Spectrom. 1993, 4, 393–398.CrossRefGoogle Scholar
  30. 30.
    Karas, M.; Bahr, U.; Strupat, K.; Hillenkamp, F.; Tsarbopoulos, A.; Pramanik, B. N. Matrix dependence of metastable fragmentation of glycoproteins in MALDI TOF mass spectrometry. Anal. Chem. 1995, 67, 675–679.CrossRefGoogle Scholar
  31. 31.
    Beavis, R. C.; Chaudhary, T.; Chait, B. T. Org. Mass Spectrom. 1992, 27, 156.CrossRefGoogle Scholar
  32. 32.
    Beavis, R. C.; Chait, B. T. Rapid Commun. Mass Spectrom. 1989, 3, 233–237.CrossRefGoogle Scholar
  33. 33.
    Juhasz, P.; Costello, C. E.; Biemann, K. Matrix-assisted laser desorption ionization mass spectrometry with 2-(4-hydroxyphenylazo)benzoic acid matrix. J. Am. Soc. Mass Spectrom. 1993, 4, 399–409.CrossRefGoogle Scholar
  34. 34.
    Xu, N.; Huang, Z.; Watson, J.; Gage, D. Mercaptobenzothiazoles: A new class of matrices for laser desorption ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 1997, 8, 116–124.CrossRefGoogle Scholar
  35. 35.
    Danis, P. O.; Karr, D. E.; Simonsick, W. J.; Wu, D. T. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry characterization of poly(butyl methacrylate)synthesized by group-transfer polymerization. Macromol. 1995, 28, 1229–1232.CrossRefGoogle Scholar
  36. 36.
    Brown, R. S.; Durrant, E. E. Metastable ion decay in IR-MALDI: Charge state and desorption wavelength effects. Proceedings of the 51st ASMS Annual Conference on Mass Spectrometry and Allied Topics; Montreal, Canada, June 2003.Google Scholar
  37. 37.
    Liu, Z. Y.; Russell, D. H.; Sumner, L. W. Ion-to-Neutral Ratios: A unique measure of internal energy content of MALDI ions. Proceedings of the 50th ASMS Annual Conference on Mass Spectrometry and Allied Topics; Orlando, FL, June 2002.Google Scholar
  38. 38.
    Wysocki, V. H.; Tsaprailis, G.; Smith, L. L.; Breci, L. A. Mobile and localized protons: A framework for understanding peptide dissociation. J. Mass Spectrom. 2000, 35, 1399–1406.CrossRefGoogle Scholar
  39. 39.
    Jones, M. D.; Patterson, S. D.; Lu, H. S. Determination of disulfide bonds in highly bridged disulfide-linked peptides by matrix-assisted laser desorption/ionization mass spectrometry with postsource decay. Anal. Chem. 1998, 70, 136–143.CrossRefGoogle Scholar
  40. 40.
    Brown, R. S.; Carr, B. L.; Lennon, J. J. Factors that influence the observed fast fragmentation of peptides in matrix-assisted laser desorption. J. Am. Soc. Mass Spectrom. 1996, 7, 225–232.CrossRefGoogle Scholar
  41. 41.
    Frankevich, V.; Zhang, J.; Dashtiev, M.; Zenobi, R. Production and fragmentation of multiply charged ions in “electron-free” matrix-assisted laser desorption/ionization. Rapid Commun. Mass Spectrom. 2003, 17, 2343–2348.CrossRefGoogle Scholar
  42. 42.
    Loo, J. A.; Edmonds, C. G.; Smith, R. D. Tandem mass spectrometry of very large molecules: 2. Dissociation of multiply charged proline-containing proteins from electrospray ionization. Anal. Chem. 1993, 55, 425–438.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2005

Authors and Affiliations

  1. 1.Department of Cell and Molecular PharmacologyMedical University of South CarolinaCharlestonUSA

Personalised recommendations