Assigning product ions from complex MS/MS spectra: The importance of mass uncertainty and resolving power

  • Lekha Sleno
  • Dietrich A. Volmer
  • Alan G. Marshall
Articles

Abstract

This study offers a unique insight into the mass accuracy and resolving power requirements in MS/MS analyses of complex product ion spectra. In the examples presented here, accurate mass assignments were often difficult because of multiple isobaric interferences and centroid mass shifts. The question then arose whether the resolving power of a medium-resolution quadrupole time-of flight (QqTOF) is sufficient or high-resolution Fourier-transform ion cyclotron resonance (FT-ICR) is required for unambiguous assignments of elemental compositions. For the comparison, two paralytic shellfish poisons (PSP), saxitoxin (STX) and neosaxitoxin (NEO), with molecular weights of 299 and 315 g·mol−1, respectively, were chosen because of the high peak density in their MS/MS spectra. The assessment of QqTOF collision-induced dissociation spectra and FT-ICR infrared multiphoton dissociation spectra revealed that several intrinsic dissociation pathways leading to isobaric fragment ions could not be resolved with the QqTOF instrument and required FT-ICR to distinguish very close mass differences. The second major source of interferences was M+1 species originating from coactivated 13C12CCc−1 ion contributions of the protonated molecules of the PSPs. The problem in QqTOF MS results from internal mass calibration when the MH+ ions of analyte and mass calibrant are activated at the same time in the collision or trapping cell. Although FT-ICR MS readily resolved these interfering species, the QqTOF did not provide resolving power >20,000 (full width at half maximum) required to separate most isobaric species. We were able to develop a semi-internal QqTOF calibration technique that activated only the isolated 12C isotope species of the protonated molecules, thus reducing the M+1 interferences significantly. In terms of overall automated elemental formulas assignment, FT-ICR MS achieved the first formula hit for 100% of the product ions, whereas the QqTOF MS hit rate was only 56 and 65% for STX and NEO product ions, respectively. External mass calibration from commercial FT-ICR and QqTOF instruments gave similar results.

References

  1. 1.
    Watt, A. P.; Mortishire-Smith, R. J.; Gerhard, U.; Thomas, S. R. Metabolite identification in drug discovery. Curr. Opin. Drug Discov. Dev. 2003, 6, 57–65.Google Scholar
  2. 2.
    Papac, D. I.; Shahrokh, Z. Mass spectrometry innovations in drug discovery and development. Pharm. Res. 2001, 18, 131–145.CrossRefGoogle Scholar
  3. 3.
    Hoke, S. H.; Morand, K. L.; Greis, K. D.; Baker, T. R.; Harbol, K. L.; Dobson, R. L. M. Transformations in pharmaceutical research and development, driven by innovations in multidimensional mass spectrometry-based technologies. Int. J. Mass Spectrom. 2001, 212, 135–196.CrossRefGoogle Scholar
  4. 4.
    Lee, M. S.; Kerns, E. H. LC/MS applications in drug development. Mass Spectrom. Rev. 1999, 18, 187–279.CrossRefGoogle Scholar
  5. 5.
    Kostiainen, R.; Kotiaho, T.; Kuuranne, T.; Auriola, S. Liquid chromatography/atmospheric pressure ionization-mass spectrometry in drug metabolism studies. J. Mass Spectrom. 2003, 38, 357–372.CrossRefGoogle Scholar
  6. 6.
    Cody, R. B.; Freiser, B. S. High-resolution detection of collision-induced dissociation fragments by Fourier transform mass spectrometry. Anal. Chem. 1982, 54, 1431–1433.CrossRefGoogle Scholar
  7. 7.
    Colombo, M.; Sirtori, F. R.; Rizzo, V. A fully automated method for accurate mass determination using high-performance liquid chromatography with a quadrupole/orthogonal acceleration time-of-flight mass spectrometer. Rapid Commun. Mass Spectrom. 2004, 18, 511–517.CrossRefGoogle Scholar
  8. 8.
    Fang, L. L.; Demee, M.; Cournoyer, J.; Sierra, T.; Young, C.; Yan, B. Parallel high-throughput accurate mass measurement using a nine-channel multiplexed electrospray liquid chromatography ultraviolet time-of-flight mass spectrometry system. Rapid Commun. Mass Spectrom. 2003, 17, 1425–1432.CrossRefGoogle Scholar
  9. 9.
    Belov, M. E.; Anderson, G. A.; Wingerd, M. A.; Udseth, H. R.; Tang, K. Q.; Prior, D. C.; Swanson, K. R.; Buschbach, M. A.; Strittmatter, E. F.; Moore, R. J.; Smith, R. D. An automated high performance capillary liquid chromatography-Fourier transform ion cyclotron resonance mass spectrometer for high-throughput proteomics. J. Am. Soc. Mass Spectrom. 2004, 15, 212–232.CrossRefGoogle Scholar
  10. 10.
    Sleno, L.; Windust, A. J.; Volmer, D. A. Structural study of spirolide marine toxins by mass spectrometry—Part I. Fragmentation pathways of 13-desmethyl spirolide C by collision-induced dissociation and infrared multiphoton dissociation mass spectrometry. Anal. Bioanal. Chem. 2004, 378, 969–976.CrossRefGoogle Scholar
  11. 11.
    Sleno, L.; Windust, A. J.; Volmer, D. A. Structural study of spirolide marine toxins by mass spectrometry—Part II. Characterization of unknown spirolides and related compounds in cultured phytoplankton extract. Anal. Bioanal. Chem. 2004, 378, 977–986.CrossRefGoogle Scholar
  12. 12.
    Fiehn, O.; Kopka, J.; Trethewey, R. N.; Willmitzer, L. Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal. Chem. 2000, 72, 3573–3580.CrossRefGoogle Scholar
  13. 13.
    Eckers, C.; Wolff, J. C.; Haskins, N. J.; Sage, A. B.; Giles, K.; Bateman, R. Accurate mass liquid chromatography/mass spectrometry on orthogonal acceleration time-of-flight mass analyzers using switching between separate sample and reference sprays. 1. Proof of concept. Anal. Chem. 2000, 72, 3683–3688.CrossRefGoogle Scholar
  14. 14.
    Charles, L. Flow injection of the lock mass standard for accurate mass measurement in electrospray ionization time-of-flight mass spectrometry coupled with liquid chromatography. Rapid Commun. Mass Spectrom. 2003, 17, 1383–1388.CrossRefGoogle Scholar
  15. 15.
    Pelander, A.; Ojanpera, I.; Laks, S.; Rasanen, I.; Vuori, E. Toxicological screening with formula-based metabolite identification by liquid chromatography/time-of-flight mass spectrometry. Anal. Chem. 2003, 75, 5710–5718.CrossRefGoogle Scholar
  16. 16.
    Marshall, A. G.; Rodgers, R. P. Petroleomics: The next grand challenge for chemical analysis. Acc. Chem. Res. 2004, 37, 53–59.CrossRefGoogle Scholar
  17. 17.
    Stenson, A. C.; Marshall, A. G.; Cooper, W. T. Exact masses and chemical formulas of individual Suwannee River fulvic acids from ultrahigh resolution electrospray Ionization Fourier transform ion cyclotron resonance mass spectra. Anal. Chem. 2003, 75, 1275–1284.CrossRefGoogle Scholar
  18. 18.
    Sleno, L.; Volmer, D. A.; Kovacevic, B.; Maksic, Z. B. Gas-phase dissociation reactions of protonated saxitoxin and neosaxitoxin. J. Am. Soc. Mass Spectrom. 2004, 15, 462–477.CrossRefGoogle Scholar
  19. 19.
    Thompson, C. M.; Richards, D. S.; Fancy, S. A.; Perkins, G. L.; Pullen, F. S.; Thom, C. A comparison of accurate mass techniques for the structural elucidation of fluconazole. Rapid Commun. Mass Spectrom. 2003, 17, 2804–2808.CrossRefGoogle Scholar
  20. 20.
    Hau, J.; Stadler, R.; Jenny, T. A.; Fay, L. B. Tandem mass spectrometric accurate mass performance of time-of-flight and Fourier transform ion cyclotron resonance mass spectrometry: A case study with pyridine derivatives. Rapid Commun. Mass Spectrom. 2001, 15, 1840–1848.CrossRefGoogle Scholar
  21. 21.
    Bristow, A. W. T.; Webb, K. S. Intercomparison study on accurate mass measurement of small molecules in mass spectrometry. J. Am. Soc. Mass Spectrom. 2003, 14, 1086–1098.CrossRefGoogle Scholar
  22. 22.
    Lee, H.-N.; Marshall, A. G. Theoretical maximal precision for mass-to-charge ratio, amplitude, and width measurement in ion-counting mass analyzers. Anal. Chem. 2000, 72, 2256–2260.CrossRefGoogle Scholar
  23. 23.
    Gauthier, J. W.; Trautman, T. R.; Jacobson, D. B. Sustained off-resonance irradiation for CAD involving FTMS. CAD technique that emulates infrared multiphoton dissociation. Anal. Chim. Acta 1991, 246, 211–225.CrossRefGoogle Scholar
  24. 24.
    McLuckey, S. A.; Goeringer, D. E. Slow heating methods in tandem mass spectrometry. J. Mass Spectrom. 1997, 35, 461–474.CrossRefGoogle Scholar
  25. 25.
    Senko, M. W.; Hendrickson, C. L.; Pasa-Tolic, L.; Marto, J. A.; White, F. M.; Guan, S.; Marshall, A. G. Electrospray ionization FT-ICR mass spectrometry at 9.4 tesla. Rapid Commun. Mass Spectrom. 1996, 10, 1824–1828.CrossRefGoogle Scholar
  26. 26.
    Senko, M. W.; Hendrickson, C. L.; Emmett, M. R.; Shi, S. D.-H.; Marshall, A. G. External accumulation of ions for enhanced electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. J. Am. Soc. Mass Spectrom. 1997, 8, 970–976.CrossRefGoogle Scholar
  27. 27.
    Chalmers, M. J.; Quinn, J. P.; Blakney, G. T.; Emmett, M. R.; Mischak, H.; Gaskell, S. J.; Marshall, A. G. Liquid chromatography-Fourier transform ion cyclotron resonance mass spectrometric characterization of protein kinase C phosphorylation. J. Proteome Res. 2003, 2, 373–382.CrossRefGoogle Scholar
  28. 28.
    Chowdhury, S. K.; Katta, V.; Chait, B. T. An electrospray-ionization mass-spectrometer with new features. Rapid Commun. Mass Spectrom. 1990, 4, 81–87.CrossRefGoogle Scholar
  29. 29.
    Wilcox, B. E.; Hendrickson, C. L.; Marshall, A. G. Improved ion extraction from a linear octopole ion trap: SIMION analysis and experimental demonstration. J. Am. Soc. Mass Spectrom. 2002, 13, 1304–1312.CrossRefGoogle Scholar
  30. 30.
    Marshall, A. G.; Verdun, F. R. Fourier Transforms in NMR, Optical, and Mass Spectrometry: A User’s Handbook; Elsevier: Amsterdam, 1990.Google Scholar
  31. 31.
    Ledford, E. B. Jr.; Rempel, D. L.; Gross, M. L. Space charge effects in Fourier transform mass spectrometry. Mass calibration. Anal. Chem. 1984, 56, 2744–2748.CrossRefGoogle Scholar
  32. 32.
    Shi, S. D. H.; Drader, J. J.; Freitas, M. A.; Hendrickson, C. L.; Marshall, A. G. Comparison and interconversion of the two most common frequency-to-mass calibration functions for Fourier transform ion cyclotron resonance mass spectrometry. Int. J. Mass Spectrom. 2000, 196, 591–598.CrossRefGoogle Scholar
  33. 33.
    Marshall, A. G.; Wang, T.-C. L.; Ricca, T. L. Tailored excitation for Fourier transform ion cyclotron resonance mass spectrometry. J. Am. Chem. Soc. 1985, 107, 7893–7897.CrossRefGoogle Scholar
  34. 34.
    Guan, S.; Marshall, A. G. Stored waveform inverse Fourier transform (SWIFT) ion excitation in trapped-ion mass spectrometry: Theory and applications. Int. J. Mass Spectrom. Ion Processes 1996, 158, 5–37.CrossRefGoogle Scholar
  35. 35.
    Meija, J.; Caruso, J. A. Deconvolution of isobaric interferences in mass spectra. J. Am. Soc. Mass Spectrom. 2004, 15, 654–658.CrossRefGoogle Scholar
  36. 36.
    Limbach, P. A.; Grosshans, P. B.; Marshall, A. G. Experimental determination of the number of trapped ions, detection limit, and dynamic range in FT/ICR/MS. Anal. Chem. 1993, 65, 135–140.CrossRefGoogle Scholar
  37. 37.
    Olsen, J. V.; Ong, S.-E.; Mann, M. Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol. Cell. Proteom. 2004, 3, 608–614.CrossRefGoogle Scholar
  38. 38.
    Grange, A. H.; Genicola, F. A.; Sovocool, G. W. Utility of three types of mass spectrometers for determining elemental compositions of ions formed from chromatographically separated compounds. Rapid Commun. Mass Spectrom. 2002, 16, 2356–2369.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2004

Authors and Affiliations

  • Lekha Sleno
    • 1
  • Dietrich A. Volmer
    • 1
  • Alan G. Marshall
    • 2
  1. 1.Institute for Marine BiosciencesNational Research CouncilHalifaxCanada
  2. 2.National High Magnetic Field LaboratoryFlorida State UniversityTallahasseeUSA

Personalised recommendations