Ferrocenoyl piperazide as derivatizing agent for the analysis of isocyanates and related compounds using liquid chromatography/electrochemistry/mass spectrometry (LC/EC/MS)

Focus: Electrochemistry Combined With MS


Ferrocenoyl piperazide is introduced as a new pre-column derivatizing agent for the analysis of various isocyanates in air samples using reversed-phase liquid chromatographic separation, electrochemical oxidation/ionization, and mass spectrometry. The nonpolar derivatives can be separated well using a phenyl-modified stationary phase and a formic acid/ammonium formate buffer of pH 3, which yields excellent separations, especially for one problematic group of isocyanates consisting of 2,4- and 2,6-toluylenediisocyanate (2,4- and 2,6-TDI) and hexamethylenediisocyanate (HDI). Electrochemical oxidation at low potentials (0. 5 V versus Pd/H2) leads to formation of charged products, which are nebulized in a commercial atmospheric pressure chemical ionization (APCI) source, with the corona discharge operated only at low voltage. Limits of detection between 6 and 20 nmol/L are obtained for the isocyanate derivatives, and calibration is linear over at least two decades of concentration. The method is applied for the analysis of air after thermal degradation of a polyurethane foam, and it is demonstrated that it is suitable as well for the analysis of carboxylic acid chlorides and of isothiocyanates.


  1. 1.
    Ulrich, H. Chemistry and Technology of Isocyanates; John Wiley and Sons: Chichester, New York, Brisbane, Toronto, Singapore, 1996.Google Scholar
  2. 2.
    Purnell, C. J.; Walker, R. F. Methods for the determination of atmospheric organic isocyanates. A review. Analyst 1985, 110, 893–905.CrossRefGoogle Scholar
  3. 3.
    Elms, J.; Beckett, P. N.; Griffin, P.; Curran, A. D. Mechanisms of isocyanate sensitization. An in vitro approach. Toxicol. in Vitro 2001, 15, 631–634.CrossRefGoogle Scholar
  4. 4.
    Karlsson, D.; Dahlin, J.; Skarping, G.; Dalene, M. Determination of isocyanates, aminoisocyanates, and amines in air formed during the thermal degradation of polyurethane. J. Environ. Monit. 2002, 4, 216–222.CrossRefGoogle Scholar
  5. 5.
    Karlsson, D.; Spanne, M.; Dalene, M.; Skarping, G. Airborne thermal degradation products of polyurethane coatings in car repair shops. J. Environ. Monit. 2000, 2, 462–469.CrossRefGoogle Scholar
  6. 6.
    Marcali, K. Microdetermination of toluenediisocyanates in atmosphere. Anal. Chem. 1957, 29, 552–558.CrossRefGoogle Scholar
  7. 7.
    Warwick, C. J.; Bagon, D. A.; Purnell, C. J. Application of electrochemical detection to the measurement of free monomeric aromatic and aliphatic isocyanates in air by high-performance liquid chromatography. Analyst 1981, 106(6), 676–685.CrossRefGoogle Scholar
  8. 8.
    Kääriä, K.; Hirvonen, A.; Norppa, H.; Piirilä, P.; Vainio, H.; Rosenberg, C. Exposure to 4,4′-methylenediphenyl diisocyanate (MDI) during molding of rigid polyurethane foam: Determination of airborne MDI and urinary 4,4′-methylenedianiline (MDA). Analyst 2001, 126, 476–479.CrossRefGoogle Scholar
  9. 9.
    Molander, P.; Haugland, K.; Fladseth, G.; Lundanes, E.; Thorud, S.; Thomassen, Y.; Greibrokk, T. Determination of 1-(2-methoxyphenyl)piperazine derivatives of isocyanates at low concentrations by temperature-programmed miniaturized liquid chromatography. J. Chromatogr. A 2000, 892, 67–74.CrossRefGoogle Scholar
  10. 10.
    Ekman, J.; Levin, J. O.; Lindahl, R.; Sundgren, M.; Östin, A. Comparison of sampling methods for 1,6-hexamethylene diisocyanate, (HDI) in a commercial spray box. Analyst 2002, 127, 169–173.CrossRefGoogle Scholar
  11. 11.
    Methods for the determination of hazardous substances, MDHS 25/3: Organic isocyanates in air; Health and Safety Executive (HSE): London, 1999.Google Scholar
  12. 12.
    Henriks-Eckerman, M.-L.; Välimaa, J.; Rosenberg, C. Determination of airborne methyl isocyanate as dibutylamine or 1-(2-methoxyphenyl)piperazine derivatives by liquid and gas chromatography. Analyst 2000, 125, 1949–1954.CrossRefGoogle Scholar
  13. 13.
    Sangö, C.; Zimerson, E. A new reagent for determination of isocyanates in working atmospheres by HPLC using UV or fluorescence detection. J. Liq. Chromatogr. 1980, 2, 971–990.CrossRefGoogle Scholar
  14. 14.
    Andersson, K.; Gudéhn, A.; Hallgren, C.; Levin, J. O.; Nilsson, C.-A. Monitoring 1,6-hexamethylene diisocyanate in air by chemosorption sampling. Scand. J. Work Environ. 1993, 9, 497–503.Google Scholar
  15. 15.
    Rudzinski, W. E.; Yin, J.; Norman, S. H.; Glaska, D. A. Determination of hexamethylene-based isocyanates in spray-painting operations. Part 1. Evaluation of a polyurethane foam sponge sampler. Analyst 1998, 123, 2079–2083.CrossRefGoogle Scholar
  16. 16.
    Streicher, R. P.; Arnold, J. E.; Ernst, M. K.; Cooper, C. Development of a novel derivatization reagents for the sampling and analysis of total isocyanate group in air and comparison of its performance with that of several established reagents. Am. Ind. Hyg. Asoc. J. 1996, 57, 905–913.Google Scholar
  17. 17.
    OSHA Analytical Laboratory, Method No. 54: Methyl Isocyanate (MIC); OSHA: Salt Lake City, 1985.Google Scholar
  18. 18.
    Vogel, M.; Karst, U. 4-Nitro-7-piperazino-2,1,3-benzoxadiazole as a reagent for monitoring of airborne isocyanates by liquid chromatography. Anal. Chem. 2002, 74, 6418–6426.CrossRefGoogle Scholar
  19. 19.
    Karlsson, D.; Dalene, M.; Skarping, G. Determination of complex mixtures of airborne isocyanates and amines. Part 5. Determination of low molecular weight aliphatic isocyanates as dibutylamine derivatives. Analyst 1998, 123, 1507–1512.CrossRefGoogle Scholar
  20. 20.
    Henneken, H.; Lindahl, R.; Östin, A.; Vogel, M.; Levin, J. O.; Karst, U. Diffusive sampling of methyl isocyanate using 4-nitro-7-piperazinobenzo-2-oxa-1,3-diazole (NBDPZ) as derivatizing agent. J. Environ. Monit. 2003, 5, 100–105.CrossRefGoogle Scholar
  21. 21.
    von Zweigbergk, P.; Lindahl, R.; Östin, A.; Ekman., J.; Levin, J. O. Development of a diffusive sampling method for determination of methyl isocyanate in air. J. Environ. Monit. 2002, 4, 663–666.CrossRefGoogle Scholar
  22. 22.
    Brooks, C. J. W.; Cole, W. J. Cyclic ferroceneboronates as derivatives for the gas chromatographic separation and characterization of diols and related compounds. J. Chromatogr. 1987, 399, 207–221.CrossRefGoogle Scholar
  23. 23.
    Rolfes, J.; Andersson, J. T. Determination of trace amounts of alcohols and phenols in complex mixtures as ferrocenecarboxylic acid esters with gas chromatography-atomic emission detection. Anal. Commun. 1996, 33, 429–433.CrossRefGoogle Scholar
  24. 24.
    Rolfes, J.; Andersson, J. T. Determination of Alkylphenols after derivatization to ferrocenecarboxylic acid esters with gas chromatography-atomic emission detection. Anal. Chem. 2001, 73, 3073–3082.CrossRefGoogle Scholar
  25. 25.
    Shimada, K.; Oe, T.; Nambara, T. Sensitive ferrocene reagents for derivatization of thiol compounds in high-performance liquid chromatography with dual-electrode Coulometric detection. J. Chromatogr. Biomed. Appl. 1987, 419, 17–25.CrossRefGoogle Scholar
  26. 26.
    Shimada, K.; Sakayori, C.; Nambara, T. Determination of fatty acids by high-performance liquid chromatography with electrochemical detection using a ferrocene derivatization reagent. J. Liq. Chromatogr. 1987, 10, 2177–2187.CrossRefGoogle Scholar
  27. 27.
    Gamoh, K.; Sawamoto, H.; Kakatsuto, S.; Watabe, Y.; Arimoto, H. Ferroceneboronic acid as a derivatization reagent for the determination of brassinosteroids by high-performance liquid chromatography with electrochemical detection. J. Chromatogr. 1990, 515, 227–231.CrossRefGoogle Scholar
  28. 28.
    Eckert, H.; Koller, M. Derivatization reagents based on ferrocene for HPLC-ECD determination of peptides and proteins. J. Liq. Chromatogr. 1990, 13, 3399–3414.CrossRefGoogle Scholar
  29. 29.
    Eckert, H.; Koller, M. Derivatisierungsreagenzien für die HPLC-ECD-Analyse von Peptiden und Proteinen auf Ferrocenbasis: Synthese und Umsetzung mit H-Phe-OtBU als Eignungstest. Z. Naturforsch 1990, 45b, 1709–1714.Google Scholar
  30. 30.
    Cox, R. L.; Schneider, T. W.; Koppang, M. D. Ferrocene tagging of amines, amino acids, and peptides for liquid chromatography with electrochemical detection. Anal. Chim. Acta 1992, 262, 145–159.CrossRefGoogle Scholar
  31. 31.
    Shimada, K.; Kawai, Y.; Oe, T.; Nambara, T. Determination of amino acids by high performance liquid chromatography with electrochemical detection using ferrocene derivatization reagents. J. Liq. Chromatogr. 1989, 12, 359–371.CrossRefGoogle Scholar
  32. 32.
    Shimada, K.; Oe, T.; Tanaka, M.; Nambara, T. Sensitive ferrocene reagents for derivatization of amines for high-performance liquid chromatography with electrochemical detection. J. Chromatogr. Biomed. Appl. 1989, 487, 247–255.CrossRefGoogle Scholar
  33. 33.
    Lo, K. K.-W.; Ng, D. C.-M.; Lau, J. S.-Y.; Wu, R. S.-S.; Lam, P. K.-S. Derivatization of microcystin with a redox-active label for high-performance liquid chromatography/electrochemical detection. New J. Chem. 2003, 27, 274–279.CrossRefGoogle Scholar
  34. 34.
    Van Berkel, G. J.; Quirke, J. M. E.; Tigani, R. A.; Dilley, A. S.; Covey, T. R. Derivatization for electrospray ionization mass spectrometry. 3. Electrochemically ionizable derivatives. Anal. Chem. 1998, 70, 1544–1554.CrossRefGoogle Scholar
  35. 35.
    Quirke, J. M. E.; Hsu, Y.-L.; Van Berkel, G. J. Ferrocene-based electroactive derivatizing reagents for the rapid selective screening of alcohols and phenols in natural product mixtures using electrospray-tandem mass spectrometry. J. Nat. Prod. 2000, 63, 230–237.CrossRefGoogle Scholar
  36. 36.
    Quirke, J. M. E.; Van Berkel, G. J. Electrospray tandem mass spectrometric study of ferrocene carbamate ester derivatives of saturated primary, secondary, and tertiary alcohols. J. Mass Spectrom. 2001, 36, 179–187.CrossRefGoogle Scholar
  37. 37.
    Van Berkel, G. J.; Quirke, J. M. E.; Adams, C. L. Derivatization for electrospray ionization-mass spectrometry. 4. Alkenes and alkynes. Rapid Commun. Mass Spectrom. 2000, 14, 849–858.CrossRefGoogle Scholar
  38. 38.
    Williams, D.; Young, M. K. Analysis of neutral isomeric low molecular weight carbohydrates using ferrocenyl boronate derivatization and tandem electrospray mass spectrometry. Rapid Commun. Mass Spectrom. 2000, 14, 2083–2091.CrossRefGoogle Scholar
  39. 39.
    Williams, D.; Chen, S.; Young, M. K. Ratiometric analysis of the ferrocene boronate esters of 2- and 4-hydroxyestradiol by tandem electrospray mass spectrometry. Rapid Commun. Mass Spectrom. 2001, 15, 182–186.CrossRefGoogle Scholar
  40. 40.
    Diehl, G.; Liesener, A.; Karst, U. Liquid chromatography with post-column electrochemical treatment and mass spectrometric detection of nonpolar compounds. Analyst 2001, 126, 288–290.CrossRefGoogle Scholar
  41. 41.
    Diehl, G.; Karst, U. Fast liquid chromatography-electrochemistry-mass spectrometry of ferrocenecarboxylic acid esters. J. Chromatogr. A 2002, 974, 103–109.CrossRefGoogle Scholar
  42. 42.
    Diehl, G.; Wasinski, F. A. H.; Roberz, B.; Luftmann, H.; Schmidt, T. C.; Andersson, J. T.; Karst, U. Liquid Chromatography/Electrochemistry/Mass Spectrometry as screening technique for alcohols and phenols in fuels. Microchim. Acta 2004, 146, 137–147.CrossRefGoogle Scholar
  43. 43.
    Blomqvist, P.; Hertzberg, T.; Dalene, M.; Skarping, G. Isocyanates, aminoisocyanates, and amines from fires—a screening of common materials found in buildings. Fire Mater. 2003, 27, 275–294.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2004

Authors and Affiliations

  1. 1.Department of Chemical Analysis and MESA+ Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations