Metabolomic applications of electrochemistry/Mass spectrometry

  • Paul H. Gamache
  • David F. Meyer
  • Michael C. Granger
  • Ian N. Acworth
Focus: Electrochemistry Combined With MS

Abstract

Analytical techniques used for multivariate analysis of endogenous metabolites in biological systems (e. g., metabolomics, metabonomics) must be capable of accurately and selectively monitoring many known and unknown molecules that span a diverse chemical spectrum and over extremely large dynamic concentration ranges. Mass spectrometric (MS) and electrochemical array (EC-Array) detection have been widely used for multi-component analysis with applicability to low-level (fmol) metabolites. Described here are practical considerations and results obtained with the combined use of EC-Array and MS for HPLC-based multivariate metabolomic analysis. Data presented include the study of changes in rat urinary metabolite profiles associated with xenobiotic toxin exposure analyzed by HPLC using water:acetonitrile binary gradient conditions and post-column flow splitting between EC-Array and MS detectors. Results show complementary quantitative and qualitative analysis and the ability to differentiate sample groups consistent with xenobiotic-induced histopathological changes. The potential applicability of this hyphenated technique for biomarker elucidation through measurement of redox active compounds that are commonly associated with disease pathology and xenobiotic toxicity is discussed. The use of EC reactor cells in series with MS is also presented as a means of producing likely metabolites to facilitate structural elucidation and confirmation.

References

  1. 1.
    Nobeli, I.; Ponstingl, H.; Krissinel, E. B.; Thornton, J. M. A Structure-Based Anatomy of the E. coli Metabolome. J. Mol. Biol. 2003, 334, 697–719.CrossRefGoogle Scholar
  2. 2.
    Castrillo, J. I.; Oliver, S. G. Yeast as a Touchstone in Post-Genomic Research: Strategies for Integrative Analysis in Functional G Enomics. J. Biochem. Mol. Biol. 2004, 37, 93–106.Google Scholar
  3. 3.
    Weckwerth, W. Metabolomics in Systems Biology. Annu. Rev. Plant Biol. 2003, 54, 669–689.CrossRefGoogle Scholar
  4. 4.
    Maharjan, R. P.; Ferenci, T. Global Metabolite Analysis: The Influence of Extraction Methodology on Metabolome Profiles of Escherichia coli. Anal. Biochem. 2003, 313, 145–154.CrossRefGoogle Scholar
  5. 5.
    Nicholson, J. K.; Lindon, J. C.; Holmes, E. “Metabonomics”: Understanding the Metabolic Responses of Living Systems to Pathophysiological Stimuli via Multivariate Statistical Analysis of Biological NMR Spectroscopic Data. Xenobiotica 1999, 29, 1181–1189.CrossRefGoogle Scholar
  6. 6.
    Raamsdonk, L. M.; Teusink, B.; Broadhurst, D.; Zhang, N.; Hayes, A.; Walsh, M. C.; Berden, J. A.; Brindle, K. M.; Kell, D. B.; Rowland, J. J.; Westerhoff, H. V.; van Dam, K.; Oliver, S. G. A Functional Genomics Strategy that Uses Metabolome Data to Reveal the Phenotype of Silent Mutations. Nat. Biotechnol. 2001, 19, 45–50.CrossRefGoogle Scholar
  7. 7.
    Williams, G. M.; Iatropoulos, M. J. Alteration of Liver Cell Function and Proliferation: Differentiation Between Adaptation and Toxicity. Toxicol. Pathol. 2002, 30, 41–53.CrossRefGoogle Scholar
  8. 8.
    Robertson, D. G.; Reily, M. D.; Albassam, M.; Dethloff, L. A. Metabonomic Assessment of Vasculitis in Rats. Cardiovasc. Toxicol. 2001, 1, 7–19.CrossRefGoogle Scholar
  9. 9.
    Nicholson, J. K.; Connelly, J.; Lindon, J. C.; Holmes, E. Metabonomics: A Platform for Studying Drug Toxicity and Gene Function. Nat. Rev. Drug Discov. 2002, 1, 153–161.CrossRefGoogle Scholar
  10. 10.
    Holmes, E.; Nicholls, A. W.; Lindon, J. C.; Connor, S. C.; Connelly, J. C.; Haselden, J. N.; Damment, S. J.; Spraul, M.; Neidig, P.; Nicholson, J. K. Chemometric Models for Toxicity Classification Based on NMR Spectra of Biofluids. Chem. Res. Toxicol. 2000, 13, 471–478.CrossRefGoogle Scholar
  11. 11.
    Bailey, W. J.; Ulrich, R. Molecular Profiling Approaches for Identifying Novel Biomarkers. Expert Opin. Drug Safety 2004, 3, 137–151.CrossRefGoogle Scholar
  12. 12.
    Strickland, P. T.; Routledge, M. N.; Dipple, A. Methodologies for Measuring Carcinogen Adducts in Humans. Cancer Epidemiol. Biomarkers Prev. 1993, 2, 607–619.Google Scholar
  13. 13.
    Hensley, K.; Williamson, K. S.; Floyd, R. A. Measurement of 3-Nitrotyrosine and 5-Nitro-γ-Tocopherol by High-Performance Liquid Chromatography with Electrochemical Detection. Free Rad. Biol. Med. 2000, 28, 520–528.CrossRefGoogle Scholar
  14. 14.
    Shigenaga, M. K.; Ames, B. N. Assays for 8-Hydroxy-2′-Deoxyguanosine: A Biomarker of in Vivo Oxidative DNA Damage. Free Rad. Biol. Med. 1991, 10, 211–216.CrossRefGoogle Scholar
  15. 15.
    Jonsson, P.; Gullberg, J.; Nordstrom, A.; Kusano, M.; Kowalczyk, M.; Sjostrom, M.; Moritz, T. A Strategy for Identifying Differences in Large Series of Metabolomic Samples Analyzed by GC/MS. Anal. Chem. 2004, 76, 1738–1745.CrossRefGoogle Scholar
  16. 16.
    Verdonk, J. C.; Ric de Vos, C. H.; Verhoeven, H. A.; Haring, M. A.; van Tunen, A. J.; Schuurink, R. C. Regulation of Floral Scent Production in Petunia Revealed by Targeted Metabolomics. Phytochemistry 2003, 62, 997–991008.CrossRefGoogle Scholar
  17. 17.
    Gamache, P.; Ryan, E.; Svendsen, C.; Murayama, K.; Acworth, I. N. Simultaneous Measurement of Monoamines, Metabolites, and Amino Aacids in Brain Tissue and Microdialysis Perfusates. J. Chromatogr. 1993, 614, 213–220.CrossRefGoogle Scholar
  18. 18.
    Shi, H.; Vigneau-Callahan, K. E.; Shestopalov, A. I.; Milbury, P. E.; Matson, W. R.; Kristal, B. S. Characterization of Diet-Dependent Metabolic Serotypes: Proof of Principle in Female and Male Rats. J. Nutr. 2002, 132, 1031–1038.Google Scholar
  19. 19.
    Devanesan, P.; Todorovic, R.; Zhao, J.; Gross, M. L.; Rogan, E. G.; Cavalieri, E. L. Catechol Estrogen Conjugates and DNA Adducts in the Kidney of Male Syrian Golden Hamsters Treated with 4-Hydroxyestradiol: Potential Biomarkers for Estrogen-Initiated Cancer. Carcinogenesis 2001, 22, 489–497.CrossRefGoogle Scholar
  20. 20.
    Todorovic, R.; Devanesan, P.; Higginbotham, S.; Zhao, J.; Gross, M. L.; Rogan, E. G.; Cavalieri, E. L. Analysis of Potential Biomarkers of Estrogen-Initiated Cancer in the Urine of Syrian Golden Hamsters Treated with 4-Hydroxyestradiol. Carcinogenesis 2001, 22, 905–911.CrossRefGoogle Scholar
  21. 21.
    Gamache, P.; Freeto, S. M.; Acworth, I. N. Coulometric Array HPLC Analysis of Lipid Soluble Vitamins and Antioxidants. Am. Clin. Lab. 1999, 18, 18–19.Google Scholar
  22. 22.
    Buchholz, A.; Hurlebaus, J.; Wandrey, C.; Takors, R. Metabolomics: Quantification of Intracellular Metabolite Dynamics. Biomol. Eng. 2002, 19, 5–15.CrossRefGoogle Scholar
  23. 23.
    Plumb, R.; Granger, J.; Stumpf, C.; Wilson, I. D.; Evans, J. A.; Lenz, E. M. Metabonomic Analysis of Mouse Urine by Liquid-Chromatography Time of Flight Mass Spectrometry (LC-TOFMS): Detection of Strain, Diurnal, and Gender Differences. Analyst 2003, 128, 819–823.CrossRefGoogle Scholar
  24. 24.
    Lafaye, A.; Junot, C.; Ramounet-Le Gall, B.; Fritsch, P.; Tabet, J. C.; Ezan, E. Metabolite Profiling in Rat Urine by Liquid Chromatography/Electrospray Ion Trap Mass Spectrometry. Application to the Study of Heavy Metal Toxicity. Rapid Commun. Mass Spectrom. 2003, 17, 2541–2549.CrossRefGoogle Scholar
  25. 25.
    Shockcor, J. P.; Holmes, E. Metabonomic Applications in Toxicity Screening and Disease Diagnosis. Curr. Top. Med. Chem. 2002, 2, 35–51.CrossRefGoogle Scholar
  26. 26.
    Cadenas, S.; Barja, G.; Poulsen, H. E.; Loft, S. Oxidative DNA Damage Estimated by oxo8dG in the Liver of Guinea Pigs Supplemented with Graded Dietary Doses of Ascorbic Aacid and α-Tocopherol. Carcinogenesis 1997, 18, 2373–2377.CrossRefGoogle Scholar
  27. 27.
    Yanagawa, K.; Takeda, H.; Egashira, T.; Matsumiya, T.; Shibuya, T.; Takasaki, M. Changes in Antioxidative Mechanisms in Elderly Patients with Noninsulin-Dependent Diabetes Mellitus. Investigation of the Redox Dynamics of α-Tocopherol in Erythrocyte Membranes. Gerontology 2001, 47, 150–157.CrossRefGoogle Scholar
  28. 28.
    Bugianesi, R.; Serafini, M.; Simone, F.; Wu, D.; Meydani, S.; Ferro-Luzzi, A.; Azzini, E.; Maiani, G. High-Performance Liquid Chromatography with Coulometric Electrode Array Detector for the Determination of Quercetin Levels in Cells of the Immune System. Anal. Biochem. 2000, 284, 296–300.CrossRefGoogle Scholar
  29. 29.
    Christen, S.; Jiang, Q.; Shigenaga, M. K.; Ames, B. N. Analysis of Plasma Tocopherols α, γ, and 5-Nitro-γ in Rats with Inflammation by HPLC Coulometric Detection. J. Lipid Res. 2002, 43, 1978–1985.CrossRefGoogle Scholar
  30. 30.
    Hensley, K.; Maidt, M. L.; Pye, Q. N.; Stewart, C. A.; Wack, M.; Tabatabaie, T.; Floyd, R. A. Quantitation of Protein-Bound 3-Nitrotyrosine and 3,4-Dihydroxyphenylalanine by High-Performance Liquid Chromatography with Electrochemical Array Detection. Anal. Biochem. 1997, 251, 187–195.CrossRefGoogle Scholar
  31. 31.
    Collins, A. R.; Gedik, C. M.; Olmedilla, B.; Southon, S.; Bellizzi, M. Oxidative DNA Damage Measured in Human Lymphocytes: Large Differences Between Sexes and Between Countries, and Correlations with Heart Disease Mortality Rates. FASEB J. 1998, 12, 1397–1400.Google Scholar
  32. 32.
    Sofic, E.; Lange, K. W.; Jellinger, K.; Riederer, P. Reduced and Oxidized Glutathione in the Substantia nigra of Patients with Parkinson’s Disease. Neurosci. Lett. 1992, 142, 128–130.CrossRefGoogle Scholar
  33. 33.
    Russell, I. J.; Vaeroy, H.; Javors, M.; Nyberg, F. Cerebrospinal Fluid Biogenic Amine Metabolites in Fibromyalgia/Fibrositis Syndrome and Rheumatoid Arthritis. Arthritis Rheum. 1992, 35, 550–556.CrossRefGoogle Scholar
  34. 34.
    Beal, M. F.; Matson, W. R.; Storey, E.; Milbury, P.; Ryan, E. A.; Ogawa, T.; Bird, E. D. Kynurenic Acid Concentrations are Reduced in Huntington’s Disease Cerebral Cortex. J. Neurol. Sci. 1992, 108, 80–87.CrossRefGoogle Scholar
  35. 35.
    Zhou, F.; Van Berkel, G. J. Electrochemistry Combined On-Line with Electrospray Mass Spectrometry. Anal. Chem. 1995, 67, 3643–3649.CrossRefGoogle Scholar
  36. 36.
    Jurva, U.; Wikstrom, H. V.; Bruins, A. P. In Vitro Mimicry of Metabolic Oxidation Reactions by Electrochemistry/Mass Spectrometry. Rapid Commun. Mass Spectrom. 2000, 14, 529–533.CrossRefGoogle Scholar
  37. 37.
    Deng, H.; Van Berkel, G. J. A Thin-Layer Electrochemical Flow Cell Coupled On-Line with Electrospray-Mass Spectrometry for the Study of Biological Redox Reactions. Electroanalysis 1999, 11, 857–865.CrossRefGoogle Scholar
  38. 38.
    Nicholls, A. W.; Holmes, E.; Lindon, J. C.; Shockcor, J. P.; Farrant, R. D.; Haselden, J. N.; Damment, S. J.; Waterfield, C. J.; Nicholson, J. K. Metabonomic Investigations into Hydrazine toxicity in the Rat. Chem. Res. Toxicol. 2001, 14, 975–987.CrossRefGoogle Scholar
  39. 39.
    Liu, S.; Griffiths, W. J.; Sjovall, J. On-Column Electrochemical Reactions Accompanying the Electrospray Process. Anal. Chem. 2003, 75, 1022–1030.CrossRefGoogle Scholar
  40. 40.
    Ferruzzi, M. G.; Sander, L. C.; Rock, C. L.; Schwartz, S. J. Carotenoid Determination in Biological Microsamples Using Liquid Chromatography with a Coulometric Electrochemical Array Detector. Anal. Biochem. 1998, 256, 74–81.CrossRefGoogle Scholar
  41. 41.
    Nelson, S. D. Molecular Mechanisms of the Hepatotoxicity Caused by Acetaminophen. Semin. Liver Dis. 1990, 10, 267–278.CrossRefGoogle Scholar
  42. 42.
    Jurva, U.; Wikstrom, H. V.; Weidolf, L.; Bruins, A. P. Comparison Between Electrochemistry/Mass Spectrometry and Cytochrome P450 Catalyzed Oxidation Reactions. Rapid Commun. Mass Spectrom. 2003, 17, 800–810.CrossRefGoogle Scholar
  43. 43.
    Gamache, P.; Smith, R.; McCarthy, R.; Waraska, J.; Acworth, I. N. ADME/Tox Profiling Using Coulometric Electrochemistry and Electrospray Ionization Mass Spectrometry. Spectroscopy 2003, 18, 14–21.Google Scholar
  44. 44.
    Devanesan, P.; Santen, R. J.; Bocchinfuso, W. P.; Korach, K. S.; Rogan, E. G.; Cavalieri, E. Catechol Estrogen Metabolites and Conjugates in Mammary Tumors and Hyperplastic Tissue from Estrogen Receptor-α Knock-Out (ERKO)/Wnt-1 Mice: Implications for Initiation of Mammary Tumors. Carcinogenesis 2001, 22, 1573–1576.CrossRefGoogle Scholar
  45. 45.
    Gamache, P.; Solomon, M.; Acworth, I. N.; Cole, R. Rapid On-Line Electrochemical Synthesis of Pharmaceutical Degradants and Metabolites for Profiling, Identification, and Quantitation. Pittcon 2004.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2004

Authors and Affiliations

  • Paul H. Gamache
    • 1
  • David F. Meyer
    • 1
  • Michael C. Granger
    • 1
  • Ian N. Acworth
    • 1
  1. 1.ESA Inc.ChelmsfordUSA

Personalised recommendations