Forensic confirmatory analysis of ethyl sulfate—A new marker for alcohol consumption—by liquid-chromatography/electrospray ionization/tandem mass spectrometry

  • Sebastian Dresen
  • Wolfgang Weinmann
  • Friedrich Martin Wurst
Application Note


Ethyl sulfate (EtS)—a new direct marker for ethanol intake besides ethyl glucuronide (EtG) and others—was detected in urine samples by electrospray ionization tandem mass-spectrometry (LC-ESI-MS/MS). Ethyl sulfate sodium salt was used for method development, yielding a precursor [M−H] m/z 125 and product ions m/z 97 [HSO4] and m/z 80 [SO3]. Pentadeuterated EtS (D5-EtS) was synthesized by esterification of sulfuric acid with anhydrous hexadeutero ethanol ([M − H] m/z 130, product ions m/z 98 [DSO4] and m/z 80 [SO3]). After addition of D5-EtS and D5-EtG, urine samples were analyzed by direct injection into the gradient LC-MS/MS system. Analysis was performed in accordance with forensic guidelines for confirmatory analysis using one precursor and two product ions. EtS has been detected (in addition to EtG) in the urine samples of nine volunteers after drinking sparkling wine containing between 9 and 49 g of ethanol. Both EtS and EtG could be detected up to 36 h after consumption of alcohol. The excretion profile was found to be similar to that of EtG. No EtS was found in teetotalers’ urine samples. Method validation parameters are presented. EtS was stable in urine upon storage up to twenty days at room temperature. In addition to EtG, EtS can be used to detect recent alcohol consumption, thus providing a second marker for the time range of up to approximately one day after elimination of ethanol from urine samples. The determination of EtS can be used in addition to EtG as proof of ethanol consumption in workplace monitoring programs.


  1. 1.
    Vestermark, A.; Boström, H. Studies on Ester Sulfates. V. On the Enzymatic Formation of Ester Sulfates of Primary Aliphatic Alcohols. Exp. Cell Res. 1959, 18, 174–177.CrossRefGoogle Scholar
  2. 2.
    Boström, H.; Vestermark, A. Studies on Ester Sulfates. VII. On the Excretion of Sulphate Conjugates of Primary Aliphatic Alcohols in the Urine of Rats. Acta Physiol. Scand 1960, 48, 88–94.CrossRefGoogle Scholar
  3. 3.
    Bernstein, J.; Martinez, B.; Escobales, N.; Santacana, G. The Pulmonary Ethanol Metabolizing System (PET). Res. Commun. Chem. Pathol. Pharmacol. 1983, 39, 49–67.Google Scholar
  4. 4.
    Bernstein, J.; Meneses, P.; Basilio, C.; Martinez, B. Further Characterization of the Pulmonary Ethanol Metabolizing System (PET). Res. Commun. Chem. Pathol. Pharmacol. 1984, 46, 21–36.Google Scholar
  5. 5.
    Bernstein, J.; Basilio, C.; Martinez, B. Ethanol Sulfation by the Pulmonary Ethanol Metabolizing System (PET). Res. Commun. Chem. Pathol. Pharmacol. 1990, 68, 219–234.Google Scholar
  6. 6.
    Manautou, J. E.; Carlson, G. P. Comparison of Pulmonary and Hepatic Glucuronidation and Sulfatation of Ethanol in Rat and Rabbit in Vitro. Xenobiotica 1992, 22, 1309–1319.CrossRefGoogle Scholar
  7. 7.
    Carlini, E. J.; Raftogianis, R. B.; Wood, T. C.; Jin, F.; Zheng, W.; Rebbeck, T. R.; Weinshilboum, R. M. Sulfation Pharmacogenetics: SULT1A1 and SULT1A2 allele frequencies in Caucasian, Chinese, and AfricanAmerican subjects. Pharmacogenetics 2001, 11, 57–68.CrossRefGoogle Scholar
  8. 8.
    Bonte, W.; Ruedell, E.; Sprung, R.; Frauenrath, C.; Blanke, E.; Kupilas, G.; Wochnik, J.; Zäh, G. Experimental Investigations Concerning the Blood-Analytical Detection of Small Doses of Higher Aliphatic Alcohols in Man. Blutalkohol 1981, 18, 399–411.Google Scholar
  9. 9.
    Helander, A.; Beck, O. Mass Spectrometric Identification of Ethyl Sulfate as an Ethanol Metabolite in Humans. Clin. Chem. 2004, 5, 936–937.CrossRefGoogle Scholar
  10. 10.
    Weinmann, W.; Schaefer, P.; Thierauf, A.; Schreiber, A.; Wurst, F. M. Confirmatory Analysis of Ethyl Glucuronide in Urine by Liquid-chromatography/Electrospray-Tandem-Mass-Spectro-metry. J. Am. Soc. Mass Spectrom. 2004, 15, 188–193.CrossRefGoogle Scholar
  11. 11.
    Aderjan, R.; Babel, B.; Briellmann, T.; Daldrup, T.; Demme, U.; Hallbach, J.; Hartung, M.; Harzer, K.; Herbold, M.; von Meyer, L.; Moeller, M.; Musshoff, F.; Schmitt, G.; Weinmann, W. Anlage zu den Richtlinien der GTFCh zur Qualitätssicherung bei forensisch-toxikologischen Untersuchungen. Anhang A: Anfor-derung an einzelne Analysenmethoden. Toxichem., Krimtech 2000, 67, 13–16. ( accessed May 24, 2004.)Google Scholar
  12. 12.
    Stolker, A. A. M.; Stephany, R. W.; van Ginkel, L. A. Identification of Residues by LC-MS. The Application of New EU Guidelines. Analusis 2000, 28, 947–951.CrossRefGoogle Scholar
  13. 13.
    Rivier, L. Criteria for the Identification of Compounds by Liquid Chromatography-Mass Spectrometry and Liquid Chromatography-Multiple Mass Spectrometry in Forensic Toxicology and Doping Analysis. Anal. Chimica Acta 2002, 492, 69–82.CrossRefGoogle Scholar
  14. 14.
    Schmidt, G.; Herbold, M.; Aderjan R. B.E.N.: Bestimmungs-, Erfassungs-, und Nachweisgrenzen. Software Version 2.0 (, accessed May 24, 2004).Google Scholar
  15. 15.
    Dahl, H.; Stephanson, N.; Beck, O.; Helander, A. Comparison of Urinary Excretion Characteristics of Ethanol and Ethyl Glucuronide. J. Anal. Toxicol. 2002, 26, 20–204.Google Scholar
  16. 16.
    Wurst, F. M.; Skipper, G. E.; Weinmann, W. Ethyl Glucuronide—The Direct Ethanol Metabolite on the Threshold from Science to Routine Use. Addiction 2003, 98(Supl. 2), 51–61.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2004

Authors and Affiliations

  • Sebastian Dresen
    • 1
  • Wolfgang Weinmann
    • 1
  • Friedrich Martin Wurst
    • 2
  1. 1.Institute of Legal Medicine, Forensic ToxicologyUniversity HospitalFreiburgGermany
  2. 2.Psychiatric University ClinicBaselSwitzerland

Personalised recommendations