Generation of arylnitrenium ions by nitro-reduction and gas-phase synthesis of N-Heterocycles

  • Hao Chen
  • Huanwen Chen
  • R. Graham Cooks
  • Habib Bagheri


Nitro-reduction by the vinyl halide radical cation CH2 = CH-X (X = Cl or Br) converts nitroaromatics into arylnitrenium ions, significant intermediates in carcinogenesis, and the present study reports on the scope and regioselectivity of this versatile reaction. The reaction is general for different kinds of substituted nitroaromatics; para/meta substitutents have little effect on the reaction while ortho substitutents result in low yields of arylnitrenium ions. The phenylnitrenium ion PhNH+ can be generated by chemical ionization (CI) of nitrobenzene using 1,2-dichloroethane as the reagent gas or by atmospheric pressure chemical ionization (APCI) of 1,2-dichloroethane solution doped with nitrobenzene. The chemical reactivities of the arylnitrenium ions include one-step ion/molecule reactions with nucleophiles ethyl vinyl ether and 1,3-dioxolanes, respectively, involving the direct formation of new C-N bonds and synthesis of indole and benzomorpholine derivatives. The indole formation reaction parallels known condensed phase chemistry, while the concise morpholine-forming reaction remains to be sought in solution. The combination of collision-induced dissociation (CID) with novel ion/molecule reactions should provide a selective method for the detection of explosives such as TNT, RDX and HMX in mixtures using mass spectrometry. In addition to the reduction of the nitro group, reduction of methyl phenyl sulfone PhS(O)2Me to the thioanisole radical cation PhSMe occurs using the same chemical ionization reagent 1,2-dichloroethane. This probably involves an analogous reduction reaction by the reagent ion CH2 = CH-Cl.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gassman, P. G. Nitrenium Ions. Acc. Chem. Res. 1970, 3, 26.CrossRefGoogle Scholar
  2. 2.
    Fishbein, J. C.; Mcclelland, R. A. Azide Ion Trapping of the Intermediate in the Bamberger Rearrangement: Lifetime of a Free Nitrenium Ion in Aqueous Solution. J. Am. Chem. Soc. 1987, 109, 2824.CrossRefGoogle Scholar
  3. 3.
    Mcclelland, R. A. Flash Photolysis Generation and Reactivities of Carbenium Ions and Nitrenium Ions. Tetrahedron 1996, 52, 6823.CrossRefGoogle Scholar
  4. 4.
    Scribner, J. D.; Naimy, N. K. Adducts between the Carcinogen 2-Acetamidophenanthrene and Adenine and Guanine of DNA. Cancer Res. 1975, 35, 1416.Google Scholar
  5. 5.
    Miller, J. A. Carcinogenesis by Chemicals: An Overview—G. H. A. Clowes Memorial Lecture. Cancer Res. 1970, 30, 559.Google Scholar
  6. 6.
    Moonen, H. J. J.; Briede, J. J.; Van Maanen, J. M. S.; Kleinjans, J. C. S.; De Kok, T. M. C. M. Generation of Free Radicals and Induction of DNA Adducts by Activation of Heterocyclic Aromatic Amines via Different Metabolic Pathways in Vitro. Mol. Carcinogen. 2002, 35, 196.CrossRefGoogle Scholar
  7. 7.
    Hatcher, J. F.; Swaminathan, S. Identification of N-(Deoxyguanosin-8-Yl)-4-Azobiphenyl by 32p-Postlabeling Analyses of DNA in Human Uroepithelial Cells Exposed to Proximate Metabolites of the Environmental Carcinogen 4-Aminobiphenyl. Environ. Mol. Mutagen. 2002, 39, 314.CrossRefGoogle Scholar
  8. 8.
    Novak, M.; Kahley, M. J.; Lin, J.; Kennedy, S. A.; Swanegan, L. A. Reactivity Patterns of N-Arylnitrenium Ions: Lack of Correlation with S+. J. Am. Chem. Soc. 1994, 116, 11626.CrossRefGoogle Scholar
  9. 9.
    Novak, M.; Kennedy, S. A. Selective Trapping of N-Acetyl-N-(4-Biphenylyl)Nitrenium and N-Acetyl-N-(2-Fluorenyl)Nitrenium Ions by 2′-Deoxyguanosine in Aqueous Solution. J. Am. Chem. Soc. 1995, 117, 574.CrossRefGoogle Scholar
  10. 10.
    Novak, M.; Toth, K.; Rajagopal, S.; Brooks, M.; Hott, L. L.; Moslener, M. Reactivity and Selectivity of the N-Acetyl-Glu-P-1, N-Acetyl-Glu-P-2, N-Acetyl-Meiqx, and N-Acetyl-Iqx Nitrenium Ions: Comparison to Carbocyclic N-Arylnitrenium Ions. J. Am. Chem. Soc. 2002, 124, 7972.CrossRefGoogle Scholar
  11. 11.
    Srivastava, S.; Toscano, J. P.; Moran, R. J.; Falvey, D. E. Experimental Confirmation of the Iminocyclohexadienyl Cation-Like Structure of Arylnitrenium Ions: Time-Resolved IR Studies of Diphenylnitrenium Ion. J. Am. Chem. Soc. 1997, 119, 11552.CrossRefGoogle Scholar
  12. 12.
    Gassman, P. G.; Campbell, G. A. Mechanism of the Chlorination of Anilines and Related Aromatic Amines: Involvement of Nitrenium Ions. J. Am. Chem. Soc. 1971, 93, 2567.CrossRefGoogle Scholar
  13. 13.
    Gassman, P. G.; Campbell, G. A.; Frederick, R. C. Chemistry of Nitrenium Ions: XXI. Nucleophilic Aromatic Substitution of Anilines via Aryl Nitrenium Ions (Anilenium Ions). J. Am. Chem. Soc. 1972, 94, 3884.CrossRefGoogle Scholar
  14. 14.
    Ren, D.; Mcclelland, R. A. Carbocation-Like Reactivity Patterns in X′-Substituted-4-Biphenylylnitrenium Ions. Can. J. Chem. 1998, 76, 78.CrossRefGoogle Scholar
  15. 15.
    Srivastava, S.; Ruane, P. H.; Toscano, J. P.; Sullivan, M. B.; Cramer, C. J.; Chiapperino, D.; Reed, E. C.; Falvey, D. E. Structures of Reactive Nitrenium Ions: Time-Resolved Infrared Laser Flash Photolysis and Computational Studies of Substituted N-Methyl-N-Arylnitrenium Ions. J. Am. Chem. Soc. 2000, 122, 8271.CrossRefGoogle Scholar
  16. 16.
    Parks, J. M.; Ford, G. P.; Cramer, C. J. Quantum Chemical Characterization of the Reactions of Guanine with the Phenylnitrenium Ion. J. Org. Chem. 2001, 66, 8997.CrossRefGoogle Scholar
  17. 17.
    Campbell, J. L.; Kenttämaa, H. I. Reactions of the Phenylnitrenium Ion in the Gas Phase: Observing Electronic Reactivity Leading to Carcinogenic Activity, unpublished results.Google Scholar
  18. 18.
    Abramovitch, R. A.; Evertz, K.; Huttner, G.; Gibson, H. J.; Weems, H. G. Thermolysis of 1-(N-Acetyl-N-Arylamino)-2,4,6-Triphenylpyridinium Tetrafluoroborates: A New Source of Arylnitrenium Ions. J. Chem. Soc. Chem. Commun. 1988, 4, 325.CrossRefGoogle Scholar
  19. 19.
    Abramovitch, R. A.; Shi, Q. Photolytic Generation of N-Acylnitrenium Ions under Neutral Conditions: Synthesis of Polycyclic Lactams. Heterocycles 1994, 37, 1463.CrossRefGoogle Scholar
  20. 20.
    Takeuchi, H.; Hayakawa, S.; Murai, H. Singlet Stabilization of Parent Nitrenium Ion. J. Chem. Soc. Chem. Commun. 1988, 19, 1287.CrossRefGoogle Scholar
  21. 21.
    Takeuchi, H.; Hayakawa, S.; Tanahashi, T.; Kobayashi, A.; Adachi, T.; Higuchi, D. Novel Generation of Parent, Alkyl, Dialkyl, and Alicyclic Nitrenium Ions in Photolyses of Pyridinium, Quinolinium, Bipyridinium, and Phenanthrolinium Salts and Aromatic N-Substitution by Nitrenium Ions. J. Chem. Soc. Perkin 2 1991, 6, 847.CrossRefGoogle Scholar
  22. 22.
    Srivastava, S.; Kercher, M.; Falvey, D. E. On the Solution Chemistry of Parent Nitrenium Ion NH2+: The Role of the Singlet and Triplet States in Its Reactions with Water, Methanol, and Hydrocarbons. J. Org. Chem. 1999, 64, 5853.CrossRefGoogle Scholar
  23. 23.
    Moran, R. J.; Falvey, D. E. Photogenerated Diarylnitrenium Ions: Laser Flash Photolysis and Product Studies on Diphenylnitrenium Ion Generated from Photolysis of 1-(N,N-Diphenylamino)Pyridinium Ions. J. Am. Chem. Soc. 1996, 118, 8965.CrossRefGoogle Scholar
  24. 24.
    Mcclelland, R. A.; Davidse, P. A.; Hadzialic, G. Electron-Deficient Strong Bases. Generation of the 4-Biphenylyl- and 2-Fluorenylnitrenium Ions by Nitrene Protonation in Water. J. Am. Chem. Soc. 1995, 117, 4173.CrossRefGoogle Scholar
  25. 25.
    Mcclelland, R. A.; Ahmad, A.; Dicks, A. P.; Licence, V. E. Spectroscopic Characterization of the Initial C8 Intermediate in the Reaction of the 2-Fluorenylnitrenium Ion with 2′-Deoxyguanosine. J. Am. Chem. Soc. 1999, 121, 3303.CrossRefGoogle Scholar
  26. 26.
    Kennedy, S. A.; Novak, M.; Kolb, B. A. Reactions of Ester Derivatives of Carcinogenic N-(4-Biphenylyl)Hydroxylamine and the Corresponding Hydroxamic Acid with Purine Nucleosides. J. Am. Chem. Soc. 1997, 119, 7654.CrossRefGoogle Scholar
  27. 27.
    Svanholm, U.; Parker, V. D. Chemistry of the Dianisylnitrenium Ion. Stable Protonated Nitrenium Ions. J. Am. Chem. Soc. 1974, 96, 1234.CrossRefGoogle Scholar
  28. 28.
    Serve, D. Chemistry of Electrogenerated Diarylnitrenium Ions. Absorption Spectra of Stable Protonated Nitrenium Ions. J. Am. Chem. Soc. 1975, 97, 432.CrossRefGoogle Scholar
  29. 29.
    Attina, M.; Cacace, F.; Petris, G. D. Gas Phase Protonation of Alkyl and Phenyl Azides. Int. J. Mass Spectrom. Ion Processes 1989, 90, 263.CrossRefGoogle Scholar
  30. 30.
    Kasthurikrishnan, N.; Cooks, R. G.; Thompson, M. J. Sampling of Aryldiazonium, Anilino, and Aryl Radicals by Membrane Introduction Mass Spectrometry: Thermolysis of Aromatic Diazoamino Compounds. J. Am. Soc. Mass Spectrom. 1998, 9, 234.CrossRefGoogle Scholar
  31. 31.
    Chen, H.; Zheng, X.; Yang, P.; Cooks, R. G. Reduction of Nitroaromatics to Arylnitrenium Ions by Vinyl Halide Cations. Chem. Commun. 2004, 6, 688.CrossRefGoogle Scholar
  32. 32.
    Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A7; Gaussian, Inc., Pittsburgh, PA, 1998.Google Scholar
  33. 34.
    Sabino, A. A.; Meurer, E. C.; Eberlin, M. N. Ionic Transacetalization with Acylium Ions: A Class-Selective and Structurally Diagnostic Reaction for Cyclic Acetals Performed under Unique Electrospray and Atmospheric Pressure Chemical Ionization In-Source Ion-Molecule Reaction Conditions. Anal. Chem. 2003, 75, 4701.CrossRefGoogle Scholar
  34. 35.
    Kruger, T. L.; Flammang, R.; Litton, J. F.; Cooks, R. G. Protonation, Ethylation, and Allylation of Substituted Nitrobenzenes in the Gas Phase. A Study by Ion Kinetic Energy Spectrometry and Chemical Ionization. Tetrahedron Lett. 1976, 50, 4555.CrossRefGoogle Scholar
  35. 36.
    Robinson, B. Studies on the Fischer Indole Synthesis. Chem. Rev. 1969, 69, 227.CrossRefGoogle Scholar
  36. 37.
    Gassman, P. G.; Bergen, T. J. V.; Gilbert, D. P.; Cue, B. W. General Method for the Synthesis of Indoles. J. Am. Chem. Soc. 1974, 96, 5495.CrossRefGoogle Scholar
  37. 38.
    Granik, V. G.; Lyubchanskaya, V. M.; Mukhanova, T. I. Nenitzescu Reaction. Khimiko-Farmatsevticheskii Zhurnal 1993, 27, 37.Google Scholar
  38. 39.
    Glish, G. L.; Cooks, R. G. The Fischer Indole Synthesis and Pinacol Rearrangement in the Mass Spectrometer. J. Am. Chem. Soc. 1978, 100, 6720.CrossRefGoogle Scholar
  39. 40.
    Sindona, G.; Uccella, N.; Stahl, D. Reaction Mechanisms of Gaseous Organic Ions. Part 22. Structure and Reactivity of Protonated Indole in the Gas Phase by MS/MS. Int. J. Mass Spectrom. Ion Processes 1985, 63, 49.CrossRefGoogle Scholar
  40. 41.
    Mcclelland, R. A.; Kahley, M. J.; Davidse, P. A. Reactivity of the 4-Biphenyl and 2-Fluorenylnitrenium Ions with Heterocyclic and Carbon Nucleophiles. J. Phys. Org. Chem. 1996, 9, 355.CrossRefGoogle Scholar
  41. 42.
    Blanksby, S. J.; Bowie, J. H. Construction of Interstellar Cumulenes and Heterocumulenes: Mass Spectrometric Studies. Mass Spectrom. Rev. 1999, 18, 131.CrossRefGoogle Scholar
  42. 43.
    Burns, T. D.; Spence, T. G.; Mooney, M. A.; Posey, L. A. Electrospray Ionization of Divalent Transition Metal Ion Bipyridine Complexes: Spectroscopic Evidence for Preparation of Solution Analogs in the Gas Phase. Chem. Phys. Lett. 1996, 258, 669.CrossRefGoogle Scholar
  43. 44.
    Depuy, C. H. Understanding Organic Gas-Phase Anion Molecule Reactions. J. Org. Chem. 2002, 67, 2393.CrossRefGoogle Scholar
  44. 45.
    Johlman, C. L.; White, R. L.; Sawyer, D. T.; Wilkins, C. L. Gas-Phase Hydrolysis of Phenyl Acetate and Phenyl Benzoate by Superoxide Ion. J. Am. Chem. Soc. 1983, 105, 2091.CrossRefGoogle Scholar
  45. 46.
    Sainsbury, M. Oxazines, Thiazines and Their Benzoderivatives in Comprehensive Heterocyclic Chemistry 1984, 3, 995.CrossRefGoogle Scholar
  46. 47.
    Sugimoto, Y.; Otani, T.; Oie, S.; Wierzba, K.; Yamada, Y. Mechanism of Action of a New Macromolecular Antitumor Antibiotic, C-1027. J. Antibiot. 1990, 43, 417.Google Scholar
  47. 48.
    Fukuda, T.; Setoguchi, M.; Inaba, K.; Shoji, H.; Tahara, T. The Antiemetic Profile of Y-25130, a New Selective 5-Ht3 Receptor Antagonist. Eur. J. Pharmacol. 1991, 196, 299.CrossRefGoogle Scholar
  48. 49.
    Hirata, T.; Saito, H.; Tomioka, H.; Sato, K.; Jidoi, J.; Hosoe, K.; Hidaka, T. In Vitro and in Vivo Activities of the Benzoxazinorifamycin Krm-1648 Against Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 1995, 39, 2295.Google Scholar
  49. 50.
    Matsuoka, H.; Ohi, N.; Mihara, M.; Suzuki, H.; Miyamoto, K.; Maruyama, N.; Tsuji, K.; Kato, N.; Akimoto, T.; Takeda, Y.; Yano, K.; Kuroti, T. Antirheumatic Agents: Novel Methotrexate Derivatives Bearing a Benzoxazine or Benzothiazine Moiety. J. Med. Chem. 1997, 40, 105.CrossRefGoogle Scholar
  50. 51.
    Zheng, X.; Tao, W. A.; Cooks, R. G. Eberlin Reaction of Arenesulfenylium Cations with Cyclic Acetals and Ketals: Ring Contraction and Cycloreversion. J. Chem. Soc. Perkin 2 2001, 3, 350.CrossRefGoogle Scholar
  51. 52.
    Eberlin, M. N.; Cooks, R. G. Gas-Phase Oxirane to Acylium Ions on Reaction with 1,3-Dioxolanes Elucidated by Tandem and Triple Stage Mass Spectrometric Experiments. Org. Mass Spectrom. 1993, 28, 679.CrossRefGoogle Scholar
  52. 53.
    Wang, F.; Ma, S.; Tao, W. A.; Cooks, R. G. Replacement of C-O by P-O in Cyclic Acetals and Ketals. Angew. Chem., Int. Ed. Engl. 1999, 38, 386.CrossRefGoogle Scholar
  53. 54.
    Tao, W. A.; Zheng, X.; Cooks, R. G. Synthesis of B,N,O-Containing Heterocycles via Eberlin Reaction of Dimethylamino Borinium Ion with Cyclic Acetals and Ketals. J. Mass Spectrom. 2000, 35, 1215.CrossRefGoogle Scholar
  54. 55.
    Chen, H.; Zheng, X.; Cooks, R. G. Ketalization of Phosphonium Ions by 1,4-Dioxane: Selective Detection of the Chemical Warfare Agent Simulant Dmmp in Mixtures Using Ion/Molecule Reactions. J. Am. Soc. Mass Spectrom. 2003, 14, 182–188.CrossRefGoogle Scholar
  55. 56.
    Cooks, R. G. The Eberlin Reaction: Ionic Transacetalization in the Gas Phase, unpublished results.Google Scholar
  56. 57.
    Colorado, A.; Brodbelt, J. Class-Selective Collisionally Activated Dissociation/Ion-Molecule Reactions of 4-Quinolone Antibiotics. Anal. Chem. 1994, 66, 2330.CrossRefGoogle Scholar
  57. 58.
    Brodbelt, J. Analytical Applications of Ion/Molecule Reactions. Mass Spectrom. Rev. 1997, 16, 91.CrossRefGoogle Scholar
  58. 59.
    Meurer, E. C.; Chen, H.; Riter, L. S.; Cotte-Rodriguez, I.; Eberlin, M. N.; Cooks, R. G. Gas-Phase Reactions for Selective Detection of the Explosives TNT and RDX. Chem. Commun. 2004, 1, 40.CrossRefGoogle Scholar
  59. 60.
    Chen, H.; Chen, H.; Cooks, R. G. Meisenheimer Complexes Bonded at Carbon and at Oxygen in the Gas Phase. J. Am. Soc. Mass Spectrom. 2004, 15, 998–1004.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2004

Authors and Affiliations

  • Hao Chen
    • 1
  • Huanwen Chen
    • 1
  • R. Graham Cooks
    • 1
  • Habib Bagheri
    • 2
  1. 1.Department of ChemistryPurdue UniversityWest LafayetteUSA
  2. 2.Department of ChemistrySharif University of TechnologyTehranIran

Personalised recommendations