Advertisement

Evaluation of complexes of DNA duplexes and novel benzoxazoles or benzimidazoles by electrospray ionization mass spectrometry

  • Leon Oehlers
  • Carolyn L. Mazzitelli
  • Jennifer S. BrodbeltEmail author
  • Mireya Rodriguez
  • Sean Kerwin
Articles

Abstract

Electrospray ionization mass spectrometry is used to compare the metal ion binding and metal-mediated DNA binding of benzoxazole (1, 2, 3, 4) and benzimidazole (5) compounds and to elucidate the putative binding modes and stoichiometries. The observed metal versus non-metal-mediated DNA binding, as well as the specificity of DNA binding, is correlated with the biological activities of the analogs. The ESI-MS spectra for the antibacterial benzoxazole and benzimidazole analogs 4 and 5 demonstrated non-specific and non-metal-mediated binding to DNA, with the appearance of DNA complexes containing multiple ligands. The anticancer analog 2 demonstrates a clear preference for metal-mediated DNA interactions, with an apparent selectivity for Ni2+-mediated binding over the more physiologically relevant Mg2+ or Zn2+ cations. Complexation between DNA and the biologically inactive analog 1 was not observed, either in the absence or presence of metal cations.

Keywords

Electrospray Ionization Mass Spectrometry Noncovalent Complex Divalent Metal Cation Electrospray Mass Spectrum Spray Ionization Mass Spectrometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Clarke, M. J.; Sadler, P. J.; Eds.; Metallopharmaceuticals I: DNA Interactions, Topics in Biological Inorganic Chemistry; Vol. I. Springer-Verlag: Berlin, 1999.Google Scholar
  2. 2.
    Propst, C. L.; Perun, T. J. Nucleic Acid Targeted Drug Design; Marcel Dekker, Inc: New York, 1992.Google Scholar
  3. 3.
    Fricker, S. P. Metal Compounds in Cancer Therapy; Chapman and Hall: Suffolk, 1994.Google Scholar
  4. 4.
    Erkkila, K. E.; Odom, D. T.; Barton, J. K. Recognition and Reaction of Metallointercalators with DNA. Chem. Rev. 1999, 99, 2888–2795.CrossRefGoogle Scholar
  5. 5.
    Reedijk, J. DNA-Binding Properties of Heavy-Metal Complexes and Consequences of Structural Changes. Macromol. Symp. 2000, 156, 277–284.CrossRefGoogle Scholar
  6. 6.
    Reddy, B. S. P.; Sondhi, S. M.; Lown, J. W. Synthetic DNA Minor Groove-Binding Drugs. Pharmacol. Therapeut. 1999, 84, 1–111.CrossRefGoogle Scholar
  7. 7.
    Gambari, R.; Beriotto, G.; Rutidliano, C.; Bianchi, N.; Mischiati, C. Biospecific Interaction Analysis of Low-Molecular Weight Binding Drugs. J. Pharmacol. Exper. Therap. 2000, 294, 370–377.Google Scholar
  8. 8.
    Permana, P. A.; Snapka, R. M.; Shen, L. L.; Chu, D. T. W.; Clement, J. J.; Planttner, J. J. Quinobenzoxazines—A Class of Novel Antitumor Quinolones and Potent Mammalian DNA Topoisomerase-II Catalytic Inhibitors. Biochemistry 1994, 33, 11333–11339.CrossRefGoogle Scholar
  9. 9.
    Chaires, J. B. Energetics of Drug-DNA Interactions. Biopolymers 1998, 44(3), 201–215.CrossRefGoogle Scholar
  10. 10.
    Priebe, W., Ed.; Anthracycline Antibiotics: New Analogs, Methods of Delivery, and Mechanisms of Action; American Chemical Society Symposium Series: Vol. DLXXIV, Washington, DC, 1995.Google Scholar
  11. 11.
    Gale, D. C.; Goodlett, D. R.; Light-Wahl, K. J.; Smith, R. D. Observation of Duplex DNA-Drug Noncovalent Complexes by Electrospray Ionization Mass Spectrometry. J. Am. Chem. Soc. 1994, 116, 6027–6028.CrossRefGoogle Scholar
  12. 12.
    Hsieh, Y. L.; Li, Y.-T.; Henion, J. D.; Ganem, B. Studies of Noncovalent Interactions of Actinomycin D with Single-Stranded Oligodeoxynucleotides by Ion Spray Mass Spectrometry and Tandem Mass Spectrometr. Biol. Mass Spectrom. 1994, 23, 272–277.CrossRefGoogle Scholar
  13. 13.
    Gale, D. C.; Smith, R. D. Characterization of Noncovalent Complexes Formed Between Minor Groove Binding Molecules and Duplex DNA by Electrospray Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1995, 6, 1154–1160.CrossRefGoogle Scholar
  14. 14.
    Triolo, A.; Arcamone, F. M.; Raffaelli, A.; Salvadori, P. Noncovalent Complexes Between DNA-Binding Drugs and Doubly-stranded DeoxyoligonucleotidesA Study by Ionspray Mass Spectrometry. J. Mass Spectrom. 1997, 32, 1186–1193.CrossRefGoogle Scholar
  15. 15.
    Kapur, A.; Beck, J. L.; Sheil, M. M. Observation of Daunomycin and Nogalamycin Complexes with Duplex DNA Using Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 1999, 13, 2489–2492.CrossRefGoogle Scholar
  16. 16.
    Gabelica, V.; De Pauw, E.; Rosu, F. Interaction Between Antitumor Drugs and a Double-Stranded Oligonucleotide Studied by Electrospray Ionization Mass Spectrometry. J. Mass Spectrom. 1999, 34, 1328.CrossRefGoogle Scholar
  17. 17.
    Wan, K. X.; Shibue, T.; Gross, M. L. Noncovalent Complexes Between DNA-Binding Drugs and Double-Stranded OligodeoxynucelotidesA Study by ESI Ion Trap Mass Spectrometry. J. Am. Chem. Soc. 2000, 122, 300–306.CrossRefGoogle Scholar
  18. 18.
    Wan, K. X.; Gross, M. L.; Shibue, T. Gas-Phase Stability of Double-Stranded Oligodeoxynucleotides and Their Noncovalent Complexes with DNA-Binding Drugs as Revealed by Collisional Activation in an Ion Trap. J. Am. Soc. Mass Spectrom. 2000, 11, 450–459.CrossRefGoogle Scholar
  19. 19.
    Gabelica, V.; Rosu, F.; Houssier, C.; De Pauw, E. Gas Phase Thermal Denaturation of an Oligonucleotide Duplex and Its Complexes with Minor Groove Binders. Rapid Commun. Mass Spectrom. 2000, 14, 464–468.CrossRefGoogle Scholar
  20. 20.
    Iannitti-Tito, P.; Weimann, A.; Wickham, G.; Sheil, M. M. Structural Analysis of Drug-DNA Adducts by Tandem Mass Spectrometry. Analyst 2000, 125, 627–633.CrossRefGoogle Scholar
  21. 21.
    Carte, N.; Legendre, F.; Leize, E.; Potier, N.; Reeder, F.; Chottard, J.-C.; Van Dorsselaer, A. Determination by Electrospray Ionization Mass Spectrometry of the Outersphere Association Constants of DNA/Platinum Complexes Using 20-mer Oligonucelotides and [Pt(NH3)4]2+ 2Cl. Anal. Biochem. 2000, 284, 77–86.CrossRefGoogle Scholar
  22. 22.
    Harsch, A.; Marzilli, L. A.; Bunt, R. C.; Stubbe, J.; Vouros, P. Accurate and Rapid Modeling of Iron-Bleomycin-Induced DNA Damage using Tethered Duplex Oligonucleotides and Electropsray Ionization Ion Trap Mass Spectrometric Analysis. Nucleic Acids Res. 2000, 28(9), 1978–1985.CrossRefGoogle Scholar
  23. 23.
    Griffey, R. H.; Greig, M. J.; An, H.; Sasmor, H.; Manalili, S. Targeted Site-Specific Gas-Phase Cleavage of Oligoribonucleotides. Application in Mass Spectrometry-Based Identification of Ligand Binding Sites. J. Am. Chem. Soc. 1999, 121, 474–475.CrossRefGoogle Scholar
  24. 24.
    Griffey, R. H.; Hofstadler, S. A.; Sannes-Lowery, K. A.; Ecker, D. J.; Crooke, S. T. Determinants of Aminoglycoside Binding Specificity for rRNA by Using Mass Spectrometry. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 10129–10133.CrossRefGoogle Scholar
  25. 25.
    Sannes-Lowery, K. A.; Mei, H.-Y.; Loo, J. A. Studying Aminoglycoside Binding to HIV-1 TAR RNA by Electrospray Ionization Mass Spectrometry. Int. J. Mass Spectrom. 1999, 193, 115–121.CrossRefGoogle Scholar
  26. 26.
    Sannes-Lowery, K. A.; Drader, J. J.; Griffey, R. H.; Hofstadler, S. A. Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry as a High Throughput Affinity Screen to Identify RNA Binding Ligands. Trends Anal. Chem. 2000, 19(8), 481–491.CrossRefGoogle Scholar
  27. 27.
    Griffey, R. H.; Sannes-Lowery, K. A.; Drader, J. J.; Venkratraman, M.; Swayze, E. E.; Hofstadler, S. A. Characterization of Low-Affinity Complexes Between RNA and Small Molecules Using Electrospray Ionization Mass Spectormetry. J. Am. Chem. Soc. 2000, 122, 9933–9938.CrossRefGoogle Scholar
  28. 28.
    Sannes-Lowery, K. A.; Griffey, R. H.; Hofstadler, S. A. Measuring Dissociation Constants of RNA and Aminoglycosides Antibiotics by Electrospray Ionization Mass Spectrometry. Anal. Biochem. 2000, 280, 264–271.CrossRefGoogle Scholar
  29. 29.
    Iannitte, P.; Sheil, M. M.; Wickham, G. High Sensitivity and Fragmentation Specificity in the Analysis of Drug-DNA Adducts by Electrospray Tandem Mass Spectrometry. J. Am. Chem. Soc. 1997, 119, 1490–1491.CrossRefGoogle Scholar
  30. 30.
    Beck, J. L.; Colgrave, M. L.; Ralph, S. F.; Sheil, M. M. Electrospray Ionization Mass Spectrometry of Oligonucleotide Complexes with Drugs, Metals, and Proteins. Mass Spectrom. Rev. 2001, 20, 61–87.CrossRefGoogle Scholar
  31. 31.
    Hofstadler, S. A.; Griffey, R. H. Analysis of Noncovalent Complexes of DNA and RNA by Mass Spectrometry. Chem. Rev. 2001, 101, 377–390.CrossRefGoogle Scholar
  32. 32.
    Reyzer, M. L.; Brodbelt, J. S.; Kerwin, S. M.; Kumar, D. Evaluation of Complexation of Metal Mediated DNA Binding Drugs to Oligonucleotides via Electrospray Ionization Mass Spectrometry. Nucleic Acids Res. 2001, 29, e103.Google Scholar
  33. 33.
    Colgrave, M. L.; Beck, J. L.; Sheil, M. M.; Searle, M. S. Electrospray Ionization Mass Spectrometric Detection of Weak Noncovalent Interactions in Nogalamycin-DNA Complexes. Chem. Commun. 2002, 6, 556–557.CrossRefGoogle Scholar
  34. 34.
    Gupta, R.; Kapur, A.; Beck, J. L.; Sheil, M. M. Positive Ion Electrospray Ionization Mass Spectrometry of Double-Stranded DNA/Drug Complexes. Rapid Commun. Mass Spectrom 2001, 15, 2472–2480.CrossRefGoogle Scholar
  35. 35.
    David, W.; Kerwin, S. M.; Brodbelt, J. S. Investigation of Quadruplex DNA-Drug Interations by Electrospray Ionization-Mass Spectrometry. Anal. Chem. 2002, 74, 2029–2033.CrossRefGoogle Scholar
  36. 36.
    Kapur, A.; Beck, J. L.; Sheil, M. M. Observation of Daunomycin and Nogalamycin Complexes with Duplex DNA Using Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 1999, 13, 2489–2497.CrossRefGoogle Scholar
  37. 37.
    Guittat, L.; Alberti, P.; Rosu, F.; Van Miert, S.; Thetiot, E.; Pieters, L.; Gabelica, V.; De Pauw, E.; Ottaviani, A.; Riou, J.-F.; Mergney, J.-L. Interactions of Cryptolepine and Neocyrptolepine with Unusual DNA Structures. Biochimie 2003, 85, 535–547.CrossRefGoogle Scholar
  38. 38.
    Gabelica, V.; Galic, N.; Rosu, F.; Houssier, C.; De Pauw, E. Influence of Response Factors on Determining equilibrium Association Constants of Noncovalent Complexes by Electrospray Ionization Mass Spectrometry. J. Mass Spectrom. 2003, 38, 491–501.CrossRefGoogle Scholar
  39. 39.
    Beck, J. L.; Gupta, R.; Urathamakul, T.; Williamson, N. L.; Sheil, M. M.; Aldrich-Wright, J. R.; Ralph, S. F. Probbing DNA Selectivity of Ruthenium Metallointercalators Using ESI Mass Spectrometry. Chem. Commun. (Camb) 2003, 5, 626–627.CrossRefGoogle Scholar
  40. 40.
    Colgrave, M. L.; Beck, J. L.; Sheil, M. M.; Searle, M. S. Electrospray Ionization Mass Spectrometric Detection of Weak Noncovalent Interactions in Nogalamycin-DNA Complexes. Chem. Commun. (Camb) 2002, 6, 556–557.CrossRefGoogle Scholar
  41. 41.
    Reynolds, Michael B.; DeLuca, Mark R.; Kerwin, Sean M. The Novel Bis(benzoxazole) Cytotoxic Natural Product UK-1 is a Magnesium Ion-Dependent DNA Binding Agent and Inhibitor of Human Topoisomerase II. Bioorg. Chem. 1999, 27(4), 326–337.CrossRefGoogle Scholar
  42. 42.
    Kumar, D.; Jacob, M. R.; Reynolds, M. B.; Kerwin, S. M. Synthesis and Evaluation of Anticancer Benzoxazoles and Benzimidazoles Related to UK-1. Bioorg. Med. Chem. 2002, 10, 3997–4004.CrossRefGoogle Scholar
  43. 43.
    Wang, B. B.; Maghami, N.; Goodlin, V. L.; Smith, P. J. Critical Structural Motif for the Catalytic Inhibition of Human Topoisomerase II by UK-1 and Analogs. Bioorg. Med. Chem. Lett. 2004, 14, 3221–3226.CrossRefGoogle Scholar
  44. 44.
    Ahmed, S. A.; Gogal, R. M. Jr.; Walsh, J. E. A New Rapid and Simple Nonradioactive Assay to Monitor and Determine the Proliferation of Lymphocytes: An Alternative to [3H]Thymidine Incorporation Assay. J. Immun. Methods 1994, 170, 211–224.CrossRefGoogle Scholar
  45. 45.
    Shen, L. L.; Mitscher, L. A.; Sharma, P. N.; O’Donnell, T. J.; Chu, D. W.; Cooper, C. S.; Rosen, T.; Pernet, A. G. Mechanism of Inhibition of DNA Gyrase by Quinolone Antibacterials: A Cooperative Drug-DNA Binding Model. Biochemistry 1989, 28, 3886–3894.CrossRefGoogle Scholar
  46. 46.
    Marians, K. J.; Hiasa, H. Mechanism of Quinolone Action. A Drug-Induced Structural Perturbation of the DNA Precedes Strand Cleavage by Topoisomerase IV. J. Biol. Chem. 1997, 272, 9401–9409.CrossRefGoogle Scholar
  47. 47.
    Kampranis, S. C.; Maxwell, A. The DNA Gyrase-Quinolone Complex. ATP Hydrolysis and the Mechanism of DNA Cleavage. J. Biol. Chem. 1998, 273, 22615–22626.CrossRefGoogle Scholar
  48. 48.
    Khodursky, A. B.; Cozzarelli, N. R. The Mechanism of Inhibition of Topoisomerase IV by Quinolone Antibacterials. J. Biol. Chem. 1998, 273, 27668–27677.CrossRefGoogle Scholar
  49. 49.
    Lee, E.-J.; Yeo, J.-A.; Cho, C.-B.; Lee, G.-J.; Han, S.-W.; Kim, S.-K. Amine Group of Guanine Enhances the Binding of Norfloxacin Antibiotics to DNA. Eur. J. Biochem. 2000, 267, 6018–6024.CrossRefGoogle Scholar
  50. 50.
    Lee, H.-M.; Kim, J.-K.; Kim, S.-K. Molecular Modeling Study of the Norfloxacin-DNA Complex. J. Biomol. Struct. Dynamics 2002, 19, 1083–1091.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2004

Authors and Affiliations

  • Leon Oehlers
    • 1
  • Carolyn L. Mazzitelli
    • 1
  • Jennifer S. Brodbelt
    • 1
    Email author
  • Mireya Rodriguez
    • 2
  • Sean Kerwin
    • 2
  1. 1.Department of Chemistry and BiochemistryUniversity of Texas at AustinAustinUSA
  2. 2.Division of Medicinal Chemistry and Institute for Cellular and Molecular BiologyThe University of Texasat AustinAustinUSA

Personalised recommendations