Advertisement

Journal of the American Society for Mass Spectrometry

, Volume 15, Issue 9, pp 1341–1353 | Cite as

Nanoflow LC/IMS-MS and LC/IMS-CID/MS of protein mixtures

  • Renã A. Sowell
  • Stormy L. Koeniger
  • Stephen J. Valentine
  • Myeong Hee Moon
  • David E. ClemmerEmail author
Articles

Abstract

A simple ion trap/ion mobility/time-of-flight (TOF) mass spectrometer has been coupled with nanoflow liquid chromatography to examine the feasibility of analyzing mixtures of intact proteins. In this approach proteins are separated using reversed-phase chromatography. As components elute from the column, they are electrosprayed into the gas phase and separated again in a drift tube prior to being dispersed and analyzed in a TOF mass spectrometer. The mobilities of ions through a buffer gas depend upon their collision cross sections and charge states; separation based on these gas-phase parameters provides a new means of simplifying mass spectra and characterizing mixtures. Additionally it is possible to induce dissociation at the exit of the drift tube and examine the fragmentation patterns of specific protein ion charge states and conformations. The approach is demonstrated by examining a simple three-component mixture containing ubiquitin, cytochrome c, and myoglobin and several larger prepared protein mixtures. The potential of this approach for use in proteomic applications is considered.

Keywords

Charge State Drift Tube Electron Capture Dissociation Drift Time Flight Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aebersold, F.; Goodlett, D. R. Mass Spectrometry in Proteomics. Chem Rev. 2001, 101, 269–295.CrossRefGoogle Scholar
  2. 2.
    Gevaert, K.; Vanderkerckhove, J. Protein Identification Methods in Proteomics. Electrophoresis 2000, 21, 1145–1154.CrossRefGoogle Scholar
  3. 3.
    Jensen, P. K.; Paša-Tolić, L.; Anderson, G. A.; Horner, J. A.; Lipton, M. S.; Bruce, J. E.; Smith, R. D. Probing Proteomes Using Capillary Isoelectric Focusing-Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal. Chem. 1999, 71, 2076–2084.CrossRefGoogle Scholar
  4. 4.
    Kachman, M. T.; Wang, H.; Schwartz, D. R.; Cho, K. R.; Lubman, D. M. A 2-D Liquid Separations/Mass Mapping Method for Interlysate Comparison of Ovarian Cancers. Anal. Chem. 2002, 74, 1779–1791.CrossRefGoogle Scholar
  5. 5.
    Tong, W.; Link, A.; Eng, J. K.; Yates, J. R. III. Identification of Proteins in Complexes by Solid Phase Microextraction Multistep Elution Capillary Electrophoresis Tandem Mass Spectometry. Anal Chem. 1999, 71, 2270–2278.CrossRefGoogle Scholar
  6. 6.
    Peng, J.; Elias, J. E.; Thoreen, C. C.; Licklider, L. J.; Gygi, S. P. Evaluation of Multidimensional Chromatrography Coupled with Tandem Mass Spectometry (LC/LC-MS/MS) for Large-Scale Protein Analysis: The Yeast Proteome. J. Proteome Res. 2003, 2, 43–50.CrossRefGoogle Scholar
  7. 7.
    Klose, J.; Kobalz, U. 2-Dimensional Electrophoresis of Proteins—an Updated Protocol and Implications for a Functional-Analysis of the Genome. Electrophoresis 1995, 16, 1034–1059.CrossRefGoogle Scholar
  8. 8.
    Perrot, M.; Sagliocco, F.; Mini, T.; Monribot, C.; Schneider, U.; Shevchenko, A.; Mann, M.; Jeno, P.; Boucherie, H. Two-Dimensional Gel Protein Database of Saccharomyces cerevisiae (update 1999). Electrophoresis 1999, 20, 2280–2298.CrossRefGoogle Scholar
  9. 9.
    Futcher, B.; Latter, G. I.; Monardo, P.; McLaughlin, C. S.; Garrels, J. I. Sampling of the Yeast Proteome. Mol. Cell. Biol. 1999, 19, 7357–7368.Google Scholar
  10. 10.
    Cash, P. Characterization of Bacterial Proteomes by Two-Dimensional Electrophoresis. Anal. Chim. Acta 1998, 372, 121–145.CrossRefGoogle Scholar
  11. 11.
    Wall, D. B.; Kachman, M. T.; Gong, S. S.; Parus, S. J.; Long, M. W.; Lubman, D. M. Isoelectric Focusing Nonporous Silica Reversed-Phase High-Performance Liquid Chromatography/Electrospray Ionization Time-of-Flight Mass Spectrometry: a Three Dimensional Liquid-Phase Protein Separation Method as Applied to the Human Erythroleukemia Cell-Line. Rapid Commun. Mass Spectrom. 2001, 15, 1649–1661.CrossRefGoogle Scholar
  12. 12.
    Stephenson, J. L. Jr.; McLuckey, S. A.; Reid, G. E.; Wells, J. M.; Bundy, J. L. Ion/Ion Chemistry as a Top-Down Approach for Protein Analysis. Curr. Opin. Biotech. 2002, 13, 57–64.CrossRefGoogle Scholar
  13. 13.
    Ge, Y.; Lawhorn, B. G.; ElNaggar, M.; Strauss, E.; Park, J.; Begley, T. P.; McLafferty, F. W. Top Down Characterization of Larger Proteins (45 kDa) by Electron Capture Dissociation Mass Spectrometry. J. Am Chem. Soc. 2002, 124, 672–678.CrossRefGoogle Scholar
  14. 14.
    Martinović, S.; Veenstra, T. D.; Anderson, G. A.; Paša-Tolić, L.; Smith, R. D. Selective Incorporation of Isotopically Labeled Amino Acids for Identification of Intact Proteins on a Proteome-Wide Level. J. Mass Spectrom. 2002, 37, 99–107.CrossRefGoogle Scholar
  15. 15.
    Loo, R. R.; Cavalcoli, J. D.; VanBogelen, R. A.; Mitchell, C.; Loo, J. A.; Moldover, B.; Andrews, P. C. Virtual 2-D Gel Electrophoresis: Visualization and Analysis of the E. coli Proteome by Mass Spectrometry. Anal. Chem. 2001, 73, 4063–4070.CrossRefGoogle Scholar
  16. 16.
    VerBerkmoes, N. C.; Bundy, J. L.; Hauser, L.; Asano, K. G.; Razumovskaya, J.; Larimer, F.; Hettich, R. L.; Stephenson, J. L. Integrating “Top-Down” and “Bottom-Up” Mass Spectrometric Approaches for Proteomic Analysis of Shewanella oneidensis. J. Proteome Res. 2002, 1, 239–252.CrossRefGoogle Scholar
  17. 17.
    Reid, G. E.; Shang, H.; Hogan, J. M.; Lee, G. U.; McLuckey, S. A. Gas-Phase Concentration, Purification, and Identification of Whole Proteins from Complex Mixtures. J. Am. Chem. Soc. 2002, 124, 7353–7362.CrossRefGoogle Scholar
  18. 18.
    Meng, F.; Cargile, B. J.; Patrie, S. M.; Johnson, J. R.; McLoughlin, S. M.; Kelleher, N. L. Processing Complex Mixtures of Intact Proteins for Direct Analysis by Mass Spectrometry. Anal. Chem. 2002, 74, 2923–2929.CrossRefGoogle Scholar
  19. 19.
    Johnson, J. R.; Meng, F.; Forbes, A. J.; Cargile, B. J.; Kelleher, N. L. Fourier-Transform Mass Spectrometry for Automated Fragmentation and Identification of 5–20 kDa Proteins in Mixtures. Electrophoresis 2002, 23, 3217–3223.CrossRefGoogle Scholar
  20. 20.
    Håkansson, K.; Cooper, H. J.; Emmett, M. R.; Costello, C. E.; Marshall, A. G.; Nilsson, C. L. Electron Capture Dissociation and Infrared Multiphoton Dissociation MS/MS of an N-glycosylated Tryptic Peptic to Yield Complementary Sequence Information. Anal. Chem. 2001, 73, 4530–4536.CrossRefGoogle Scholar
  21. 21.
    Reid, G. E.; Wu, J.; Chrisman, P. A.; Wells, J. M.; McLuckey, S. A. Charge-State Dependent Sequence Analysis of Protonated Ubiquitin Ions via Ion Trap Tandem Mass Spectrometry. Anal. Chem. 2001, 73, 3274–3281.CrossRefGoogle Scholar
  22. 22.
    Engel, B. J.; Pang, P.; Reid, G. E.; Wells, J. M.; McLuckey, S. A. Charge State Dependent Fragmentation of Gaseous Protein Ions in a Quadrupole Ion Trap: Bovine ferri-, ferro- and apocytochrome c. Int. J. Mass Spectrom. 2002, 219, 171–187.CrossRefGoogle Scholar
  23. 23.
    Bowers, M. T.; Kemper, P. R.; von Helden, G.; van Koppen, P. A. M. Gas-Phase Ion Chromatography: Transition Metal State Selection and Carbon Cluster Formation. Science 1993, 260, 1446–1451.CrossRefGoogle Scholar
  24. 24.
    von Helden, G. V.; Hsu, M. T.; Gotts, N.; Bowers, M. T. Carbon Cluster Cations with Up to 84 Atoms: Structures, Formation Mechanism, and Reactivity. J. Phys. Chem. 1993, 97, 8182–8192.CrossRefGoogle Scholar
  25. 25.
    Clemmer, D. E.; Jarrold, M. F. Ion Mobility Measurements and their Applications to Clusters and Biomolecules. J. Mass Spectrom. 1997, 32, 577–592.CrossRefGoogle Scholar
  26. 26.
    Henderson, S. C.; Valentine, S. J.; Counterman, A. E.; Clemmer, D. E. ESI/Ion Trap/Ion Mobility/Time-of-Flight Mass Spectrometry for Rapid and Sensitive Analysis of Biomolecular Mixtures. Anal. Chem. 1999, 71, 291–301.CrossRefGoogle Scholar
  27. 27.
    Badman, E. R.; Myung, S.; Clemmer, D. E. Gas-Phase Separation of Proteins and Peptide Ion Fragments Generated by Collision-Induced Dissociation in an Ion Trap. Anal. Chem. 2002, 74, 4889–4894.CrossRefGoogle Scholar
  28. 28.
    Myung, S.; Badman, E. R.; Lee, Y. J.; Clemmer, D. E. Structural Transitions of Electrosprayed Ubiquitin Ions Stored in an Ion Trap ∽ 10 ms to 30s. J. Phys. Chem. A 2002, 106, 9976–9982.CrossRefGoogle Scholar
  29. 29.
    Covey, T.; Douglas, D. J. Collision Cross Sections for Protein Ions. J. Am. Soc. Mass Spectrom. 1993, 4, 616–623.CrossRefGoogle Scholar
  30. 30.
    Purves, R. W.; Barnett, D. A.; Ells, B.; Guevremont, R. Elongated Conformers of Charge States +11 to +15 of Bovine Ubiquitin Studied Using ESI-FAIMS-MS. J. Am. Soc. Mass Spectrom. 2001, 12, 894–901.CrossRefGoogle Scholar
  31. 31.
    Wu, C.; Siems, W. F.; Asbury, G. R.; Hill, H. H. Jr. Electrospray Ionization High-Resolution Ion Mobility Spectrometry-Mass Spectrometry. Anal. Chem. 1998, 70, 4929–4938.CrossRefGoogle Scholar
  32. 32.
    Gill, A. C.; Jennings, K. R.; Wyttenbach, T.; Bowers, M. T. Conformation of Biopolymers in the Gas Phase: A New Mass Spectrometric Method. Int. J. Mass Spectrom. 2000, 195/196, 685–697.CrossRefGoogle Scholar
  33. 33.
    Jarrold, M. F. Peptides and Proteins in the Vapor Phase. Annu. Rev. Phys. Chem. 2000, 51, 179–207.CrossRefGoogle Scholar
  34. 34.
    St. Louis, R. H.; Hill, H. H. Jr. Ion Mobility Spectrometry in Analytical-Chemistry. Cr. Rev. Anal. Chem. 1990, 21, 231–355.Google Scholar
  35. 35.
    Wyttenbach, T.; Kemper, P. R.; Bowers, M. T. Design of a New Electrospray Ion Mobility Mass Spectrometer. Int. J. Mass Spectrom. 2001, 212, 13–23.CrossRefGoogle Scholar
  36. 36.
    Hoaglund-Hyzer, C. S.; Counterman, A. E.; Clemmer, D. E. Anhydrous Protein Ions. Chem. Rev. 1999, 99, 3037–3079.CrossRefGoogle Scholar
  37. 37.
    Hoaglund, C. S.; Valentine, S. J.; Sporleder, C. R.; Reilly, J. P.; Clemmer, D. E. Three-Dimensional Ion Mobility/TOFMS Analysis of Electrosprayed Biomolecules. Anal. Chem. 1998, 70, 2236–2242.CrossRefGoogle Scholar
  38. 38.
    Hoaglund-Hyzer, C. S.; Clemmer, D. E. Ion Trap/Ion Mobility/Quadropole/Time-of-Flight Mass Spectrometry for Peptide Mixture Analysis. Anal. Chem. 2001, 73, 177–184.CrossRefGoogle Scholar
  39. 39.
    Hoaglund-Hyzer, C. S.; Lee, Y. J.; Counterman, A. E.; Clemmer, D. E. Coupling Ion Mobility Separations, Collisional Activation Techniques, and Multiple Stages of MS for Analysis of Complex Peptide Mixtures. Anal. Chem. 2002, 74, 992–1006.CrossRefGoogle Scholar
  40. 40.
    Valentine, S. J.; Koeniger, S. L.; Clemmer, D. E. A Split-Field Drift Tube for Separation and Efficient Fragmentation of Biomolecular Ions. Anal. Chem. 2003, 75, 6202–6208.CrossRefGoogle Scholar
  41. 41.
    Lee, Y. J.; Hoaglund-Hyzer, C. S.; Taraszka, J. A.; Zientara, G. A.; Counterman, A. E.; Clemmer, D. E. Collision-Induced Dissociation of Mobility-Separated Ions Using an Orifice-Skimmer Cone at the Back of a Drift Tube. Anal. Chem. 2001, 73, 3549–3555.CrossRefGoogle Scholar
  42. 42.
    Dahl, D. A. SIMION (Version 7. 0). Idaho National Engineering Laboratory, Idaho Falls, ID, USA.Google Scholar
  43. 43.
    Valentine, S. J.; Counterman, A. E.; Clemmer, D. E. Conformer-Dependent Proton-Transfer Reactions of Ubiquitin Ions. J. Am. Soc. Mass Spectrom. 1997, 8, 954–961.CrossRefGoogle Scholar
  44. 44.
    Collings, B. A.; Douglas, D. J. Conformation of Gas-Phase Myoglobin Ions. J. Am. Chem. Soc. 1996, 118, 4488–4489.CrossRefGoogle Scholar
  45. 45.
    Clemmer, D. E.; Hudgins, R. R.; Jarrold, M. F. Naked Protein Conformations: Cytochrome c in the Gas Phase. J. Am. Chem. Soc. 1995, 117, 10141–10142.CrossRefGoogle Scholar
  46. 46.
    Shelimov, K. B.; Jarrold, M. F. “Denaturation” and Refolding of Cytochrome c In Vacuo. J. Am. Chem. Soc. 1996, 118, 10313–10314.CrossRefGoogle Scholar
  47. 47.
    Shelimov, K. B.; Clemmer, D. E.; Hudgins, R. R.; Jarrold, M. F. Protein Structure In Vacuo: The Gas Phase Conformations of BPTI and Cytochrome c. J. Am. Chem. Soc. 1997, 119, 2240–2248.CrossRefGoogle Scholar
  48. 48.
    Woenckhaus, J.; Mao, Y.; Jarrold, M. F. Hydration of Gas Phase Proteins: Folded +5 and Unfolded +7 Charge States of Cytochrome c. J. Phys. Chem. B. 1997, 101, 847–851.CrossRefGoogle Scholar
  49. 49.
    Li, J.; Taraszka, J. A.; Counterman, A. E.; Clemmer, D. E. Influence of Solvent Composition and Capillary Temperature on the Conformations of Electrosprayed Ions: Unfolding of Compact Ubiquitin Conformers from Pseudonative and Denatured Solutions. Int. J. Mass Spectrom. 1999, 185/186/187, 37–47.Google Scholar
  50. 50.
    Mao, Y.; Woenckhaus, J.; Kolafa, J.; Ratner, M. A.; Jarrold, M. F. Thermal Unfolding of Unsolvated Cytochrome c: Experiment and Molecular Dynamics Simulations. J. Am. Chem. Soc. 1999, 121, 2712–2721.CrossRefGoogle Scholar
  51. 51.
    Jarrold, M. F.; Honea, E. C. Annealing of Silicon Clusters. J. Am. Chem. Soc. 1992, 114, 459–464.CrossRefGoogle Scholar
  52. 52.
    Shelimov, K. B.; Jarrold, M. F. Conformations, Unfolding and Refolding of Apomyoglobin in Vacuum: an Activation Barrier for Gas-Phase Protein Folding. J. Am. Chem. Soc. 1997, 119, 2987–2994.CrossRefGoogle Scholar
  53. 53.
    Valentine, S. J.; Clemmer, D. E. H/D Exchange Levels of Shape-Resolved Cytochrome c Conformers in the Gas Phase. J. Am. Chem. Soc. 1997, 119, 3558–3566.CrossRefGoogle Scholar
  54. 54.
    Valentine, S. J.; Anderson, J. G.; Ellington, A. E.; Clemmer, D. E. Disulfide-Intact and -Reduced Lysozyme in the Gas Phase: Conformations and Pathways of Folding and Unfolding. J. Phys. Chem. B 1997, 101, 3891–3900.CrossRefGoogle Scholar
  55. 55.
    Trubuil, A. Analysis of One-Dimensional Electropherograms. Comput. Appl. Biosci. 1993, 9, 451–458.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2004

Authors and Affiliations

  • Renã A. Sowell
    • 1
  • Stormy L. Koeniger
    • 1
  • Stephen J. Valentine
    • 1
  • Myeong Hee Moon
    • 1
  • David E. Clemmer
    • 1
    Email author
  1. 1.Department of ChemistryIndiana UniversityBloomingtonUSA

Personalised recommendations