Journal of the American Society for Mass Spectrometry

, Volume 15, Issue 9, pp 1360–1365 | Cite as

Chiral enrichment of serine via formation, dissociation, and soft-landing of octameric cluster ions

  • Sergio C. Nanita
  • Zoltan Takats
  • R. Graham Cooks
  • Sunnie Myung
  • David E. Clemmer
Short Communication

Abstract

Chiral enrichment of serine is achieved in experiments that involve formation of serine octamers starting from non-racemic serine solutions. Serine octamers were generated by means of electrospray and sonic spray ionization of aqueous solutions of d 3-L-serine (108 Da) and D-serine (105 Da) having different molar ratios of enantiomers. A cyclic process involving the formation of chirally-enriched octameric cluster ions and their dissociation, viz. Ser1 → Ser8 → Ser1, allows serine monomers to be regenerated with increased enantiomeric excess as shown in two types of experiments: (1) Chiral enrichment in serine was observed in MS/MS/MS experiments in a quadrupole ion trap in which the entire distribution of serine octamers formed from non-racemic solutions was isolated, collisionally activated, and fragmented. Monomeric serine was regenerated with increased enantiomeric excess upon dissociation of octamers when compared with the enantiomeric composition of the original solution. (2) Chiral enrichment was observed in the products of soft-landing of mass-selected protonated serine octamers. These ions were generated by means of electrospray or sonic spray ionization, mass selected, and collected on a gold surface using ion soft-landing. Chiral enrichment of the soft-landed serine was established by redissolving the recovered material and comparing the intensities of protonated molecular ions of d 3-L-serine and D-serine after APCI-MS analysis. Both of these experiments showed comparable results, suggesting that formation of serine octamers depends only on the enantiomeric composition of the serine solution and that the magnitude of the chiral preference is intrinsic to octamers formed from solutions of given chiral composition.

References

  1. 1.
    Zhang D.; Koch K. J.; Tao W. A.; Cooks R. G. Clustering of Amino Acids in the Gas Phase by Electrospray Ionization Mass Spectrometry; Proceedings of the 48th ASMS Conference on Mass Spectrometry and Allied Topics; Long Beach, CA, June 2000.Google Scholar
  2. 2.
    Cooks, R. G.; Zhang, D.; Koch, K. J.; Gozzo, F. C.; Eberlin, M. N. Chiroselective Self-Directed Octamerization of Serine: Implications for Homochirogenesis. Anal. Chem. 2001, 73, 3646–3655.CrossRefGoogle Scholar
  3. 3.
    Hodyss, R.; Julian, R. R.; Beauchamp, J. L. Spontaneous Chiral Separation in Noncovalent Molecular Clusters. Chirality 2001, 13, 703–706.CrossRefGoogle Scholar
  4. 4.
    Counterman, A. E.; Clemmer, D. E. Magic Number Clusters of Serine in the Gas Phase. J. Phys. Chem. B 2001, 105, 8092–8096.CrossRefGoogle Scholar
  5. 5.
    Koch, K. J.; Gozzo, F. C.; Nanita, S. C.; Takats, Z.; Eberlin, M. N.; Cooks, R. G. Chiral Transmission between Amino Acids: Chirally-Selective Amino Acid Substitution in the Serine Octamer as a Possible Step in Homochirogenesis. Angew. Chem. Int. Ed. 2002, 41, 1721–1724.CrossRefGoogle Scholar
  6. 6.
    Julian, R. R.; Hodyss, R.; Kinnear, B.; Jarrold, M.; Beauchamp, J. L. Nanocrystalline Aggregation of Serine Detected by Electrospray Ionization Mass Spectrometry: Origin of the Stable Homochiral Gas Phase Serine Octamer. J. Phys. Chem. B 2002, 106, 1219–1228.CrossRefGoogle Scholar
  7. 7.
    Schalley, C. A.; Weis, P. Unusually Stable Magic Number Clusters of Serine with a Surprising Preference for Homochirality. Int. J. Mass Spectrom. 2002, 221, 9–19.CrossRefGoogle Scholar
  8. 8.
    Takats, Z.; Nanita, S. C.; Cooks, R. G. Serine Octamer Reactions: Indicators of Prebiotic Relevance. Angew. Chem. Int. Ed. 2003, 42, 3521–3523.CrossRefGoogle Scholar
  9. 9.
    Geller, O.; Lifshitz, C. An Electrospray Ionization-Flow Tube Study of H/D Exchange in the Protonated Serine Dimer and Protonated Serine Dipeptide. Int. J. Mass Spectrom. 2003, 227, 77–85.CrossRefGoogle Scholar
  10. 10.
    Takats, Z.; Nanita, S. C.; Cooks, R. G.; Schlosser, G.; Vekey, K. Amino Acid Clusters Formed by Sonic Spray Ionization. Anal. Chem. 2003, 75, 1514–1523.CrossRefGoogle Scholar
  11. 11.
    Takats, Z.; Nanita, S. C.; Schlosser, G.; Vekey, K.; Cooks, R. G. Atmospheric Pressure Gas-Phase H/D Exchange of Serine Octamers. Anal. Chem. 2003, 75, 6147–6154.CrossRefGoogle Scholar
  12. 12.
    Myung, S.; Julian, R. R.; Nanita, S. C.; Cooks, R. G.; Clemmer, D. E. Formation of Nanometer-Scale Serine Clusters by Sonic Spray. J. Phys. Chem. B 2004, 108, 6105–6111.CrossRefGoogle Scholar
  13. 13.
    Bada, J. L. In Vivo Racemization in Mammalian Proteins. Methods Enzymol. 1984, 106, 98–115.CrossRefGoogle Scholar
  14. 14.
    Nouadje, G.; Nertz, M.; Courderc, F. Study of the Racemization of L-Serine by Cyclodextrin-Modified Micellar Electrokinetic Chromatography and Laser-Induced Fluorescence Detection. J. Chromatogr. A 1995, 716, 331–334.CrossRefGoogle Scholar
  15. 15.
    Bonner, W. A.; Lemmon, R. M. Radiolysis, Racemization and the Origin of Molecular Asymmetry in the Biosphere. J. Mol. Evol. 1978, 11, 95–99.CrossRefGoogle Scholar
  16. 16.
    Rikken, G. L. J. A.; Raupach, E. Enantioselective Magnetochiral Photochemistry. Nature 2000, 405, 932–935.CrossRefGoogle Scholar
  17. 17.
    Hazen, R. M.; Filley, T. R.; Goodfriend, G. A. Selective Adsorption of L- and D-Amino Acids on Calcite: Implications for Biochemical Homochirality. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 5487–5490.CrossRefGoogle Scholar
  18. 18.
    Orme, C. A.; Noy, A.; Wierzbicki, A.; Mcbride, M. T.; Grantham, M.; Teng, H. H.; Dove, P. M.; Deyoreo, J. J. Formation of Chiral Morphologies through Selective Binding of Amino Acids to Calcite Surface Steps. Nature 2001, 411, 775–779.CrossRefGoogle Scholar
  19. 19.
    Quack, M.; Stohner, J. Molecular Chirality and the Fundamental Symmetries of Physics: Influence of Parity Violation on Rovibrational Frequencies and Thermodynamic Properties. Chirality 2001, 13, 745–753.CrossRefGoogle Scholar
  20. 20.
    Cintas, P. Chirality of Living Systems: A Helping Hand from Crystals and Oligopeptides. Angew. Chem. Int. Ed. 2002, 41, 1139–1145.CrossRefGoogle Scholar
  21. 21.
    Green, M. M.; Park, J.-W.; Sato, T.; Teramoto, A.; Lifson, S.; Selinger, R. L. B.; Selinger, J. V. The Macromolecular Route to Chiral Amplification. Angew. Chem. Int. Ed. 1999, 38, 3138–3154.CrossRefGoogle Scholar
  22. 22.
    Green, M. M.; Garetz, B. A.; Munoz, B.; Chang, H.; Hoke, S.; Cooks, R. G. Majority Rules in the Copolymerization of Mirror Image Isomers. J. Am. Chem. Soc. 1995, 117, 4181–4182.CrossRefGoogle Scholar
  23. 23.
    Li, J.; Schuster, G. B.; Cheon, K.-S.; Green, M. M.; Selinger, J. V. Switching a Helical Polymer Between Mirror Images Using Circularly Polarized Light. J. Am. Chem. Soc. 2000, 122, 2603–2612.CrossRefGoogle Scholar
  24. 24.
    Green, M. M.; Selinger, J. V. Cosmic Chirality. Science 1998, 282, 880.Google Scholar
  25. 25.
    Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray Ionization for Mass-Spectrometry of Large Biomolecules. Science 1989, 246, 64–71.CrossRefGoogle Scholar
  26. 26.
    Hirabayashi, A.; Sakairi, M.; Koizumi, H. Sonic Spray Ionization Method for Atmospheric Pressure Ionization Mass Spectrometry. Anal. Chem. 1994, 66, 4557–4559.CrossRefGoogle Scholar
  27. 27.
    Miller, S. A.; Luo, H.; Pachuta, S. J.; Cooks, R. G. Soft-Landing of Polyatomic Ions at Fluorinated Self-Assembled Monolayer Surfaces. Science 1997, 275, 1447–1450.CrossRefGoogle Scholar
  28. 28.
    Ouyang, Z.; Takats, Z.; Blake, T. A.; Gologan, B.; Guymon, A. J.; Wiseman, J. M.; Oliver, J. C.; Davisson, V. J.; Cooks, R. G. Preparing Protein Microarrays by Soft-Landing of Mass-Selected Ions. Science 2003, 301, 1351–1354.CrossRefGoogle Scholar
  29. 29.
    Makarov, A. A. Electrostatic Axially Harmonic Orbital Trapping: A High-Performance Technique of Mass Analysis. Anal. Chem. 2000, 72, 1156–1162.CrossRefGoogle Scholar
  30. 30.
    Hardman, M.; Makarov, A. A. Interfacing the Orbitrap Mass Analyzer to an Electrospray Ion Source. Anal. Chem. 2003, 75, 1699–1705.CrossRefGoogle Scholar
  31. 31.
    Myung, S.; Lee, Y. J.; Moon, M. H.; Taraszka, J.; Sowell, R.; Koeniger, S.; Hilderbrand, A. E.; Valentine, S. J.; Cherbas, L.; Cherbas, P.; Kaufman, T. C.; Miller, D. F.; Mechref, Y.; Novotny, M. V.; Ewing, M. A.; Sporleder, C. R.; Clemmer, D. E. Development of High-Sensitivity Ion Trap Ion Mobility Spectrometry Time-of-Flight Techniques: A High-Throughput Nano-LC-IMS-TOF Separation of Peptides Arising from a Drosophila Protein Extract. Anal. Chem. 2003, 75, 5137–5145.CrossRefGoogle Scholar
  32. 32.
    Dobson, C. M.; Ellison, G. B.; Tuck, A. F.; Vaida, V. Atmospheric Aerosols as Prebiotic Chemical Reactors. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 11864–11868.CrossRefGoogle Scholar
  33. 33.
    Julian, R. R.; Myung, S.; Clemmer, D. E. Spontaneous Anti-Resolution in Heterochiral Clusters of Serine. J. Am. Chem. Soc. 2004, 126, 4110–4111.CrossRefGoogle Scholar
  34. 34.
    Takats Z.; Cooks R. G. Thermal Formation of Serine Octamer Ions. Chem. Commun. 2004, 444–445.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2004

Authors and Affiliations

  • Sergio C. Nanita
    • 1
  • Zoltan Takats
    • 1
  • R. Graham Cooks
    • 1
  • Sunnie Myung
    • 2
  • David E. Clemmer
    • 2
  1. 1.Department of ChemistryPurdue UniversityWest LafayetteUSA
  2. 2.Department of ChemistryIndiana UniversityBloomingtonUSA

Personalised recommendations