Journal of the American Society for Mass Spectrometry

, Volume 15, Issue 9, pp 1274–1286 | Cite as

Delineating mechanisms of dissociation for isomeric heparin disaccharides using isotope labeling and ion trap tandem mass spectrometry

Articles

Abstract

Heparin and heparan sulfate (HS) glycosaminoglycans have been identified as important players in many physiological as well as pathophysiological settings. A better understanding of the biosynthesis and structure of these molecules is critical for further elucidation of their biological function. We have demonstrated the successful use of negative electrospray ionization tandem mass spectrometry in the differentiation of all twelve standard heparin-building blocks, including the potentially important N-unsubstituted disaccharides. Collision induced dissociation of each of the isomeric disaccharides provided unique product ion spectra, useful for identification and quantification of the relative amounts of each isomer present. In the research presented herein, isotopic labeling studies using 18O and 2H were used to determine the origins of each of the neutral losses observed in the product ion spectra, and mechanisms of dissociation consistent with the observed data were postulated. The general mechanisms postulated were for the generation of B, Y, and Z ions formed from glycosidic cleavages, as well as A and X ions formed from cross-ring cleavages. The eight isomeric heparin disaccharides all underwent cross-ring cleavage to form 0,2X1 and 0,2A2 ions, and further experiments suggest that the mechanisms of formation of these ions are through a charge-remote process. The tandem mass spectrometry data presented herein also provide a foundation for further developments towards a practical analysis tool for the structural elucidation of larger, biologically important heparin/HS oligosaccharides by using mass spectrometry.

References

  1. 1.
    Capila, I.; Linhardt, R. J. Heparin-Protein Interactions. Angew. Chem. Int. Ed. 2002, 41(391), 412.Google Scholar
  2. 2.
    Falshaw, R.; Furneaux, R.; Slim, G. In Carbohydrates: Structures, Syntheses, and Dynamics; Finch, P., Ed.; Kluwer Academic: Dordrecht, The Netherlands, 1999; pp 107–149.Google Scholar
  3. 3.
    Norgardsumnicht, K.; Varki, A. Endothelial Heparan-Sulfate Proteoglycans That Bind to L-Selectin Have Glucosamine Residues with Unsubstituted Amino-Groups. J. Biol. Chem. 1995, 270, 12012–12024.CrossRefGoogle Scholar
  4. 4.
    Koenig, A.; Norgard-Sumnicht, K.; Linhardt, R.; Varki, A. Differential Interactions of Heparin and Heparan Sulfate Glycosaminoglycans with the Selectins—Implications for the Use of Unfractionated and Low Molecular Weight Heparins as Therapeutic Agents. J. Clin. Invest. 1998, 101, 877–889.CrossRefGoogle Scholar
  5. 5.
    Zamfir, A.; Seidler, D. G.; Kresse, H.; Peter-Katalinic, J. Structural Investigation of Chondroitin/Dermatan Sulfate Oligosaccharides from Human Skin Fibroblast Decorin. Glycobiology 2003, 13, 733–742.CrossRefGoogle Scholar
  6. 6.
    Zamfir, A.; Seidler, D. G.; Kresse, H.; Peter-Katalinic, J. Structural Characterization of Chondroitin/Dermatan Sulfate Oligosaccharides from Bovine Aorta by Capillary Electrophoresis and Electrospray Ionization Quadrupole Time-of-Flight Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2002, 16, 2015–2024.CrossRefGoogle Scholar
  7. 7.
    Zaia, J.; Costello, C. E. Tandem Mass Spectrometry of Sulfated Heparin-Like Glycosaminoglycan Oligosaccharides. Anal. Chem. 2003, 75, 2445–2455.CrossRefGoogle Scholar
  8. 8.
    Zaia, J.; Li, X. Q.; Chan, S. Y.; Costello, C. E. Tandem Mass Spectrometric Strategies for Determination of Sulfation Positions and Uronic Acid Epimerization in Chondroitin Sulfate Oligosaccharides. J. Am. Soc. Mass Spectrom. 2003, 14, 1270–1281.CrossRefGoogle Scholar
  9. 9.
    Saad, O. M.; Lim, A.; Thanawiroon, C.; Leary, J. A. Detection and Quantification of Twelve Heparin- and Heparan Sulfate-Derived Disaccharides by Electrospray Ionization Ion Trap Tandem Mass Spectrometry: Application to Heparin/Heparan Sulfate Oligosaccharide Sequencing. Glycobiology 2003, 13, 842–842.Google Scholar
  10. 10.
    Desaire, H.; Sirich, T. L.; Leary, J. A. Evidence of Block and Randomly Sequenced Chondroitin Polysaccharides: Sequential Enzymatic Digestion and Quantification Using Ion Trap Tandem Mass Spectrometry. Anal. Chem. 2001, 73, 3513–3520.CrossRefGoogle Scholar
  11. 11.
    Desaire, H.; Leary, J. A. Detection and Quantification of the Sulfated Disaccharides in Chondroitin Sulfate by Electrospray Tandem Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2000, 11, 916–920.CrossRefGoogle Scholar
  12. 12.
    Varki, A.; Cummings, R.; Esko, J.; Freeze, H.; Hart, G.; Marth, J. Essentials of Glycobiology, Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, 1999.Google Scholar
  13. 13.
    Saad, O. M.; Leary, J. A. Compositional Analysis and Quantification of Heparin and Heparan Sulfate by Electrospray Ionization Ion Trap Mass Spectrometry. Anal. Chem. 2003, 75, 2985–2995.CrossRefGoogle Scholar
  14. 14.
    Desai, U. R.; Wang, H. M.; Linhardt, R. J. Specificity Studies on the Heparin Lyases from Flavobacterium-Heparinum. Biochemistry 1993, 32, 8140–8145.CrossRefGoogle Scholar
  15. 15.
    Domon, B.; Costello, C. E. A Systematic Nomenclature for Carbohydrate Fragmentations in FAB-MS MS Spectra of Glycoconjugates. Glycoconj. J. 1988, 5, 397–409.CrossRefGoogle Scholar
  16. 16.
    Mulroney, B.; Peel, J. B.; Traeger, J. C. Theoretical Study of Deprotonated Glucopyranosyl Disaccharide Fragmentation. J. Mass Spectrom. 1999, 34, 856–871.CrossRefGoogle Scholar
  17. 17.
    Mulroney, B.; Peel, J. B.; Traeger, J. C. Relative Gas-Phase Acidities of Glucopyranose from Molecular Orbital Calculations. J. Mass Spectrom. 1999, 34, 544–553.CrossRefGoogle Scholar
  18. 18.
    Hofmeister, G. E.; Zhou, Z.; Leary, J. A. Linkage Position Determination in Lithium-Cationized Disaccharides—Tandem Mass-Spectrometry and Semiempirical Calculations. J. Am. Chem. Soc. 1991, 113, 5964–5970.CrossRefGoogle Scholar
  19. 19.
    Carroll, J. A.; Willard, D.; Lebrilla, C. B. Energetics of Cross-Ring Cleavages and Their Relevance to the Linkage Determination of Oligosaccharides. Anal. Chim. Acta 1995, 307(431), 447.Google Scholar
  20. 20.
    Adams, J. Charge-Remote Fragmentations—Analytical Applications and Fundamental Studies. Mass Spectrom. Rev. 1990, 9, 141–186.CrossRefGoogle Scholar
  21. 21.
    Tomer, K. B.; Crow, F. W.; Gross, M. L. Location of Double-Bond Position in Unsaturated Fatty-Acids by Negative-Ion MS/MS. J. Am. Chem. Soc. 1983, 105, 5487–5488.CrossRefGoogle Scholar
  22. 22.
    Lyon, P. A.; Stebbings, W. L.; Crow, F. W.; Tomer, K. B.; Lippstreu, D. L.; Gross, M. L. Analysis of Anionic Surfactants by Mass-Spectrometry Mass-Spectrometry with Fast Atom Bombardment. Anal. Chem. 1984, 56, 8–13.CrossRefGoogle Scholar
  23. 23.
    Tomer, K. B.; Jensen, N. J.; Gross, M. L.; Whitney, J. Fast-Atom Bombardment Combined with Tandem Mass-Spectrometry for Determination of Bile-Salts and Their Conjugates. Biomed. Environ. Mass 1986, 13, 265–272.CrossRefGoogle Scholar
  24. 24.
    Carr, S. A.; Reinhold, V. N.; Green, B. N.; Hass, J. R. Enhancement of Structural Information in Fab Ionized Carbohydrate Samples by Neutral Gas Collision. Biomed. Mass Spectrom. 1985, 12, 288–295.CrossRefGoogle Scholar
  25. 25.
    Whalen, K.; Grossert, J. S.; Boyd, R. K. Ion Dissociation Reactions Induced in a High-Pressure Quadrupole Collision Cell. Rapid Commun. Mass Spectrom. 1995, 9, 1366–1375.CrossRefGoogle Scholar
  26. 26.
    Gross, M. L. Charge-Remote Fragmentation: An Account of Research on Mechanisms and Applications. Int. J. Mass Spectrom. 2000, 200, 611–624.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2004

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations