Evaluation of different combinations of gated trapping, RF-only mode and trap compensation for in-field MALDI Fourier transform mass spectrometry

  • Jonathon K. Gooden
  • Don L. Rempel
  • Michael L. Gross
Focus: McLafferty Rearrangement

Abstract

MALDI, while providing advantages such as the ability to do in-depth and repeated exploration of the sample, challenges the existing performance capabilities of Fourier transform mass spectrometry (FTMS). The challenge arises because MALDI-produced ions have high mass-to-charge ratios and uncertain kinetic-energy distributions. We demonstrate that a combination of a gated trapping event, a RF-only mode pressure focusing event, and an electrically compensated trap provides a compelling advantage in meeting these challenges. Removal of any of the above combination elements significantly degrades the detection performance of substance P from 850 K resolving power at 34.9 kHz and of melittin from 278 K resolving power at 16.5 kHz when using a 3-Tesla magnet-based spectrometer.

Keywords

Melittin Ally Topic Resolve Power Quadrupolar Excitation Trapping Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Gluckmann, M.; Karas, M. The initial ion velocity and its dependence on matrix, analyte and preparation method in ultraviolet matrix-assisted laser desorption/ionization J Mass Spec 1999, 34, 467–477.CrossRefGoogle Scholar
  2. 2.
    Koster, C.; Castoro, J. A.; Wilkins, C. L. High-resolution matrix-assisted laser desorption/ionization of biomolecules by Fourier transform mass spectrometry J. Am. Chem. Soc 1992, 114, 7572–7574.CrossRefGoogle Scholar
  3. 3.
    Solouki, T.; Russell, D. H. Laser desorption studies of high mass biomolecules in Fourier-transform ion cyclotron resonance mass spectrometry Proc. Natl. Acad. Sci. U. S. A. 1992, 89, 5701–5704.CrossRefGoogle Scholar
  4. 4.
    Baykut, G.; Jertz, R.; Witt, M. Bruker Daltonik GmbH, B. G. Matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry with pulsed in-source collision gas and in-source ion accumulation Rapid Commun. Mass Spectrom 2000, 14, 1238–1247.CrossRefGoogle Scholar
  5. 5.
    McIver, J. Robert; Li, Y.; Hunter, R. L. High-resolution laser desorption mass spectrometry of peptides and small proteins. Proc. Natl. Acad. Sci. U. S. A. 1994, 91, 4801–4805.CrossRefGoogle Scholar
  6. 6.
    Yao, J.; Dey, M.; Pastor, S. J.; Wilkins, C. L. Analysis of High-Mass Biomolecules Using Electrostatic Fields and Matrix-Assisted Laser Desorption/Ionization in a Fourier Transform Mass Spectrometer Anal. Chem 1995, 67, 3638–3642.CrossRefGoogle Scholar
  7. 7.
    Easterling, M. L.; Mize, T. H.; Amster, I. J. MALDI FTMS analysis of polymers: improved performance using an open ended cylindrical analyzer cell Int. J. Mass Spectrom. Ion Proc 1997, 169/170, 387–400.CrossRefGoogle Scholar
  8. 8.
    Knobeler, M.; Wanczek, K. P. Theoretical investigation of improved ion trapping in matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry: independence of ion initial velocity. Int. J. Mass Spectrom. Ion Proc 1997, 163, 47–68.CrossRefGoogle Scholar
  9. 9.
    Hendricson, C. L.; Drader, J. J.; Quinn, J. P.; Mize, T. H.; Amster, J.; Marshall, A. G. Design and Performance of an 11-Tesla MALDI FT-ICR Mass Spectrometer Proceedings of the 47th ASMS Conference on Mass Spectrometry and Allied Topics Dallas, Texas, June 13–17, 1999.Google Scholar
  10. 10.
    Rempel, D. L.; Gross, M. L. A gated trapping strategy with a two-time constant and a delay for catching in-field generated ions that range over three decades in mass-to-charge and two decades in velocity in fourier-transform mass spectrometry. J. Am. Soc. Mass Spectrom 2001, 12, 296–303.CrossRefGoogle Scholar
  11. 11.
    Frankevich, V.; Zenobi, R. Deceleration of high-energy matrix-assisted laser desorption/ionization ions in an open cell for fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom 2001, 15, 2035–2040.CrossRefGoogle Scholar
  12. 12.
    Van Dyck, R. S., Jr.; Schwinberg, P. B. Preliminary proton/electron mass ratio using a compensated quadring Penning trap. Physical Review Letters 1981, 47, 395–398.CrossRefGoogle Scholar
  13. 13.
    Van Dyck, R. S., Jr.; Wineland, D. J.; Ekstrom, P. A.; Dehmelt, H.G. High mass resolution with a new variable anharmonicity Penning trap. Applied Physics Letters 1976, 28, 446–448.CrossRefGoogle Scholar
  14. 14.
    Gabrielse, G.; MacKintosh, F. C. Cylindrical Penning traps with orthogonalized anharmonicity compensation. Intl. J Spec Ion Proc 1984, 57, 1–17.CrossRefGoogle Scholar
  15. 15.
    Gabrielse, G. Relaxation calculation of the electrostatic properties of compensated Penning traps with hyperbolic electrodes. Physical Review A: Atomic, Molecular, and Optical Physics 1983, 27, 2277–2290.CrossRefGoogle Scholar
  16. 16.
    Naito, Y.; Inoue, M. Improvement of the electric field in FT-ICR trapped ion cell Presented at the 36th Conference on Mass Spectrometry and Allied Topics, San Francisco, CA, June 5–10, 1988, 608–609.Google Scholar
  17. 17.
    Naito, Y.; Fujiwara, M.; Inoue, M. Improvement of the electric field in the cylindrical trapped-ion cell. Int. J. Mass Spectrom. Ion Proc 1992, 120, 179–9218.CrossRefGoogle Scholar
  18. 18.
    Jackson, G. S.; White, F. M.; Guan, S.; Marshall, A. G. Matrix-shimmed ion cyclotron resonance ion trap simultaneously optimized for excitation, detection, quadrupolar axialization, and trapping. J. Am. Soc. Mass Spectrom. 1999, 10, 759–769.CrossRefGoogle Scholar
  19. 19.
    Schweikhard, L.; Becker, S.; Bollen, G.; Kluge, H.-J.; Savard, G.; Stolzenberg, H.; Wiess, U.; Moore, R. B. A new cooling mechanism for heavy ions in a penning trap Presented at the 38th Conference on Mass Spectrometry and Allied Topic, Tucson, AZ, June 3–8, 1990, 415–416.Google Scholar
  20. 20.
    Savard, G.; Becker, S.; Bollen, G.; Kluge, H. J.; Moore, R. B.; Otto, T.; Schweikhrad, L.; Stolzenberg, H.; Wiess, U. A new cooling technique for heavy ions in a Penning trap. Physics Letters A 1991, 158, 247–252.CrossRefGoogle Scholar
  21. 21.
    Schweikhard, L.; Guan, S.; Marshall, A. G. Quadrupolar excitation and collisional cooling for axialization and high pressure trapping of ions in Fourier transform ion cyclotron resonance mass spectrometry. Int. J. Mass Spectrom. Ion Proc 1992, 120, 71–83.CrossRefGoogle Scholar
  22. 22.
    Guan, S.; Kim, H. S.; Marshall, A. G.; Wahl, M. C.; Wood, T. D.; Xiang, X. Shrink-wrapping an ion cloud for high-performance Fourier transform ion cyclotron resonance mass spectrometry. Chem. Rev. (Washington, D. C.) 1994, 94, 2161–2182.CrossRefGoogle Scholar
  23. 23.
    Fisher, E. Die dreidiemensionale stabilisierung von landungstragern in einem vierpolfeld (Three-dimensional stabilization of charge carriers in a quadrupole field). Z. Phys. 1959, 156, 1–26.CrossRefGoogle Scholar
  24. 24.
    Li, G. A quantum particle in a combined trap. Zeitschrift fuer Physik D: Atoms, Molecules and Clusters 1988, 10, 451–456.CrossRefGoogle Scholar
  25. 25.
    Li, G. Z.; Werth, G. The combined trap and some possible applications. Physica Scripta 1992, 46, 587–592.CrossRefGoogle Scholar
  26. 26.
    Huang, Y.; Li, G.-Z.; Guan, S.; Marshall, A. G. A combined linear ion trap for mass spectrometry. J. Am. Soc. Mass Spectrom 1997, 8, 962–969.CrossRefGoogle Scholar
  27. 27.
    Gorshkov, M. V.; Guan, S.; Marshall, A. G. Dynamic ion trapping for Fourier-transform ion cyclotron resonance mass spectrometry: simultaneous positive- and negative-ion detection. Rapid Commun. Mass Spectrom 1992, 6, 166–172.CrossRefGoogle Scholar
  28. 28.
    Rempel, D. L. Improved peak shapes from a modified FTMS cubic cell incorporating segmented trap plates Presented at the 35th Conference on Mass Spectrometry and Allied Topics, Denver, CO, May 24–29, 1987, pp. 1124–1125.Google Scholar
  29. 29.
    Yang, S. S.; Rempel, D. L.; Gross, M. L. Exact mass errors in fourier transform mass spectrometry: experimental evidence for indirect coulombic mechanisms Presented at the 36th Conference on Mass Spectrometry and Allied Topics, San Francisco, CA, June 5–10, 1988, pp. 586–587.Google Scholar
  30. 30.
    Yang, S. S.; Rempel, D. L.; Gross, M. L. A model for the reduction of mass measurement errors due to ion-ion interaction in FTMS Presented at the 37th Conference on Mass Spectrometry and Allied Topics, Miami Beach, FL, May 21–26, 1989, 1224–1225.Google Scholar
  31. 31.
    Rempel, D. L.; Grese, R. P.; Gross, M. L. A scaling technique for studying the dynamics of high mass ions in Fourier transform mass spectrometry: a preliminary report. Int. J. Mass Spectrom. Ion Proc 1990, 100, 381–395.CrossRefGoogle Scholar
  32. 32.
    Gross, M. L.; Cerny, R. L.; Giblin, D. E.; Rempel, D. L.; MacMillan, D. K.; Hu, P.; Holliman, C. Mass spectrometric methods: an answer for macromolecule analysis in the 1990s. Anal. Chim. Acta 1991, 250, 105–130.CrossRefGoogle Scholar
  33. 33.
    Rempel, D. L.; Gross, M. L. Ion “optics” in FTMS and a RF-only mode event for the FTMS sequence as an example Presented at the 38th Conference on Mass Spectrometry and Allied Topics, Tucson, AZ, June 3–8, 1990, pp. 884–885Google Scholar
  34. 34.
    Rempel, D. L.; Gross, M. L. High pressure trapping in Fourier transform mass spectrometry: a radiofrequency-only-mode event. J. Am. Soc. Mass Spectrom 1992, 3, 590–594.CrossRefGoogle Scholar
  35. 35.
    Rempel, D. L.; Gross, M. L. Three dimensional RF-only-mode stability diagrams in FTMS Presented at the 46th Conference on Mass Spectrometry and Allied Topics, Orlando, FL, May 31–June 4, 1998, p 512.Google Scholar
  36. 36.
    Jacoby, C. B.; Holliman, C. L.; Rempel, D. L.; Gross, M. L. Ion cloud manipulation using the radiofrequency-only-mode as an improvement for high mass detection in Fourier-transform mass spectrometry. J. Am. Soc. Mass Spectrom 1993, 4, 186–189.CrossRefGoogle Scholar
  37. 37.
    Holliman, C. L.; Rempel, D. L.; Gross, M. L. Detection of high mass-to-charge ions by Fourier transform mass spectrometry. Mass Spectrom. Rev 1994, 13, 105–132.CrossRefGoogle Scholar
  38. 38.
    Gooden, J. K.; Rohrs, H.; Russell, A.; Rempel, D.; Gross, M. L. Improved performance using a compensated cubic trap for FTMS studies of MALDI generated ions Presented at the 47th Conference on Mass Spectrometry and Allied Topics, Dallas, TX, June 13–17, 1999. Google Scholar
  39. 39.
    Rohrs, H. W.; Gooden, J. K.; Rempel, D. L.; Russell, A. L.; Gross, M. L. Ion-Focusing Events in FTMS Studies of MALDI-Derived Ions Presented at the 47th Conference on Mass Spectrometry and Allied Topics, Dallas, TX, June 13–17, 1999.Google Scholar
  40. 40.
    Rempel, D. L.; Gooden, J. K.; Russell, A. L.; Barbacci, D. C.; Gross, M. L. RF-Only Mode, Frequency Focusing and Gated Trapping for In-Field MALDI FTMS: Operation Considerations Presented at the 50th Conference on Mass Spectrometry and Allied Topics, Orlando, FL June 2–6, 2002. Google Scholar
  41. 41.
    Rempel, D. L.; Gross, M. L. A radio/trap supply design that accommodates both trap electric field compensation and rapidly switched gated trapping for in-field MALDI fourier transform mass spectrometry Presented at the 48th Conference on Mass Spectrometry and Allied Topics, Long Beach, CA, June 11–15, 2000. Google Scholar
  42. 42.
    Rempel, D. L.; Holliman, C. L.; Gross, M. L. A theoretical treatment of first order triple frequency focusing for the FTMS cubic trap Presented at the 42th Conference on Mass Spectrometry and Allied Topics, Chicago, IL, May 29–June 3, 1994,, p 727.Google Scholar
  43. 43.
    Rempel, D. L. ; Gross, M. L. Examples in hierarchies of optimally triple frequency focused FTMS cubic traps Presented at the 43th Conference on Mass Spectrometry and Allied Topics, Atlanta, GA, May 21–26, 1995, p 786.Google Scholar
  44. 44.
    Easterling, M. L.; Pitsenberger, C. C.; Amster, I. J. RF capacitive coupling with efficient gated trapping in internal matrix-assisted laser desorption ionization Fourier transform ion cyclotron resonance. J. Am. Soc. Mass Spectrom 1997, 8, 195–198.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2004

Authors and Affiliations

  • Jonathon K. Gooden
    • 1
  • Don L. Rempel
    • 1
  • Michael L. Gross
    • 1
  1. 1.Department of ChemistryWashington UniversitySt. LouisUSA

Personalised recommendations