Probing three-dimensional structure of bovine serum albumin by chemical cross-linking and mass spectrometry

Articles

Abstract

Serum albumin is the principal transporter of fatty acids that are otherwise insoluble in circulating plasma. While the crystal structure of human serum albumin (HSA) as well as its binding with fatty acids has been characterized, the three dimensional structure of bovine serum albumin (BSA) has not been determined although both albumins share 76% sequence homology. In this study we used mass spectrometry coupled with chemical cross-linking, to probe the tertiary structure of BSA. BSA was modified with lysine specific cross-linkers, bis(sulfosuccinimidyl) suberate (BS3), disuccinimidyl suberate (DSS) or disuccinimidyl glutarate (DSG), digested with trypsin and analyzed by tandem mass spectrometry. With O-18 labeling during the digestion, through-space cross-linked peptides were readily identified in mass spectra by a characteristic 8 Da shift. From the cross-linked peptides identified in this study, we found that 12 pairs of lysine residues were separated within 20 Å, while 5 pairs were spaced between 20 and 24 Å. The spatial distance constraints generated from five K-K pairs in BSA were consistent with the corresponding distance obtained from the crystal structure of HSA, although only six equivalent K-K pairs could be compared. According to our data, the distance between K235 of IIA and K374 of IIB domain in BSA was farther by 7–11 Å than that expected from the crystal structure of HSA, suggesting structural differences between BSA and HSA in this region. The distance constraints obtained for lysine residues using various cross-linkers should be valuable in assisting the determination of the 3-D structure of BSA.

References

  1. 1.
    Carter, D. C.; Ho, J. X. Structure of Serum Albumin. Adv. Protein Chem. 1994, 45, 153–203.CrossRefGoogle Scholar
  2. 2.
    Figge, J.; Rossing, T. H.; Fencl, V. The Role of Serum-Proteins in Acid-Base Equilibria. J. Lab. Clin. Med. 1991, 117, 453–467.Google Scholar
  3. 3.
    Carter, D. C.; He, X.; Munson, S. H.; Twigg, P. D.; Gernert, K. M.; Broom, M. B.; Miller, T. Y. Three-Dimensional Structure of Human Serum Albumin. Science 1989, 244, 1195–1198.CrossRefGoogle Scholar
  4. 4.
    He, X. M.; Carter, D. C. Atomic Structure and Chemistry of Human Serum Albumin. Nature 1992, 358, 209–215.CrossRefGoogle Scholar
  5. 5.
    Sugio, S.; Kashima, A.; Mochizuki, S.; Noda, M.; Kobayashi, K. Crystal Structure of Human Serum Albumin at 2.5 Å Resolution. Protein Eng. 1999, 12, 439–446.CrossRefGoogle Scholar
  6. 6.
    Curry, S.; Mandelkow, H.; Brick, P.; Franks, N. Crystal Structure of Human Serum Albumin Complexed with Fatty Acid Reveals an Asymmetric Distribution of Binding Sites. Nature Struct. Biol. 1998, 5, 827–835.CrossRefGoogle Scholar
  7. 7.
    Bhattacharya, A. A.; Grune, T.; Curry, S. Crystallographic Analysis Reveals Modes of Binding of Medium and Long-Chain Fatty Acids to Human Serum Albumin. J. Mol. Biol. 2000, 303, 721–732.CrossRefGoogle Scholar
  8. 8.
    Peptipsa, I.; Grune, T.; Bhattacharya, A. A.; Curry, S. Crystal Structure of Human Serum Albumin Complexed with Monounsaturated and Polyunsaturated Fatty Acids. J. Mol. Biol. 2001, 314, 955–960.CrossRefGoogle Scholar
  9. 9.
    Zunszain, P.; Ghuman, J.; Komatsu, T.; Tsuchida, E.; Curry, S. Crystal Structure Analysis of Human Serum Albumin Complexed with Hemin and Fatty Acid BMC. Struct. Biol. 2003, 3, 1–9.CrossRefGoogle Scholar
  10. 10.
    Cistola, D. P.; Small, D. M.; Hailton, J. A. Carbon 13 NMR Studies of Saturated Fatty Acids Bound to Bobine Serum Albumin, I. The Filling of Individual Fatty Acid Binding Sites. J. Biol. Chem. 1987, 262, 10971–10979.Google Scholar
  11. 11.
    Cistola, D. P.; Small, D. M.; Hailton, J. A. Carbon 13 NMR Studies of Saturated fatty Acids Bound to Bobine Serum Albumin, II. Electrostatic Interactions in individual Fatty Acid Binding Sites. J. Biol. Chem. 1987, 262, 10980–10985.Google Scholar
  12. 12.
    Choi, J. K.; Curry, S.; Qin, D.; Bittman, R.; Hamilton, J. A. Interactions of Very Long-chain Saturated Fatty Acids with Serum Albumin. J. Lipid Res. 2002, 43, 1000–1010.CrossRefGoogle Scholar
  13. 13.
    Hamilton, J. A.; Era, S.; Bhamidipati, S. P.; Reed, R. G. Location of the Three Primary Binding Sites for Long-chain Fatty Acids on Bovine Serum Albumin. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 2051–2054.CrossRefGoogle Scholar
  14. 14.
    Young, M. M.; Tang, N.; Hempel, J. C.; Oshiro, C. M.; Taylor, E. W.; Kuntz, I. D.; Gilson, B. W.; Dollinger, G. High Throughout Protein Fold Identification by Using Experimental Constraints Derived from Intramolecular Cross-links and Mass Spectrometry. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 5802–5806.CrossRefGoogle Scholar
  15. 15.
    Rappsiber, J.; Siniossoglou, S.; Hurt, E. C.; Mann, M. A Generic Strategy to Analyze the Spatial Organization of Multi-protein Complexes by Cross-Linking and Mass spectrometry. Anal. Chem. 2000, 72, 267–275.CrossRefGoogle Scholar
  16. 16.
    Muller, D. R.; Schindler, P.; Towbin, H.; Wirth, U.; Voshol, H.; Hoving, S.; Steinmetz, M. O. Isotope-Tagged Cross-linking Reagents. A New Tool in Mass Spectrometric Protein Interaction Analysis. Anal. Chem. 2001, 73, 1927–1934.CrossRefGoogle Scholar
  17. 17.
    Bennett, K. L.; Kussmann, M.; Bjork, P.; Godzwon, M.; Mikkelsen, M.; Sorensen, P.; Roepstorff, P. Chemical Cross-linking with Thiol-Cleavable Reagents Combined with Differential Mass spectrometric Peptide Mapping—A Novel Approach to Assess Intermolecular Protein Contacts. Protein Sci. 2000, 9, 1503–1518.CrossRefGoogle Scholar
  18. 18.
    Taverner, T.; Hall, N. E.; Ohair, R. A. J.; Simpson, R. J. Characterization of an Antagonist Interleukin-6 Dimer by Stable Isotope Labeling, Cross-linking and Mass Spectrometry. J. Biol. Chem. 2002, 277, 46487–46492.CrossRefGoogle Scholar
  19. 19.
    Pearson, K. M.; Pannell, L. K.; Fales, H. M. Intramolecular Cross-linking Experiments on Cytochrome C and Ribonuclease A Using an Isotope Multiplet Method. Rapid Commun. Mass Spectrom. 2002, 16, 149–159.CrossRefGoogle Scholar
  20. 20.
    Back, J. W.; Notenboom, V.; Koning, L. J.; Muijsers, A. O.; Sixma, T. K.; Koster, C. G.; Jong, L. Identification of Cross-Linked Peptides for Protein Interaction Studies Using Mass Spectrometry and 18O Labeling. Anal. Chem. 2002, 74, 4417–4422.CrossRefGoogle Scholar
  21. 21.
    Schnolzer, M.; Jedrzejewski, P.; Lehmann, W. D. Protease-Catalyzed Incorporation of 18O Into Peptide Fragments and Its Application for Protein Sequencing by Electrospray and Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Electrophoresis 1996, 17, 945–953.CrossRefGoogle Scholar
  22. 22.
    Reynolds, K. J.; Yao, X.; Fenselau, C. J. Proteolytic 18O Labeling for Comparative Proteomics: Evaluation of Endoprotease Glu-C as the Catalytic Agent. J. Proteome Res. 2002, 1, 27–33.CrossRefGoogle Scholar
  23. 23.
    Haniu, M.; Narhi, L. O.; Arakawa, T.; Elliott, S.; Rohde, M. F. Recombinant human erythropoietin (rHuEPO): Cross-Linking with Disuccinimidyl Esters and Identification of the Interfacing Domains in EPO. Protein Sci. 1993, 2, 1441–1451.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2004

Authors and Affiliations

  1. 1.Section of Mass Spectrometry, Laboratory of Membrane Biophysics and BiochemistryNIAAA, NIHBethesdaUSA
  2. 2.Chemistry DepartmentThe University of MemphisMemphisUSA

Personalised recommendations