Modeling deoxyribose radicals by neutralization-reionization mass spectrometry. Part 2. Preparation, dissociations, and energetics of 3-hydroxyoxolan-3-yl radical and cation

  • Shetty Vivekananda
  • Martin Sadílek
  • Xiaohong Chen
  • Luke E. Adams
  • František Tureček
Focus: McLafferty Rearrangement


The title radical (1) is generated in the gas-phase by collisional neutralization of carbonyl-protonated oxolan-3-one. A 1.5% fraction of 1 does not dissociate and is detected following reionization as survivor ions. The major dissociation of 1 (∼56%) occurs as loss of the hydroxyl H atom forming oxolan-3-one (2). The competing ring cleavages by O-C-2 and C-4-C-5 bond dissociations combined account for ∼42% of dissociation and result in the formation of formaldehyde and 2-hydroxyallyl radical. Additional ring-cleavage dissociations of 1 resulting in the formation of C2H3O and C2H4O cannot be explained as occurring competitively on the doublet ground (X) electronic state of 1, but are energetically accessible from the A and higher electronic states accessed by vertical electron transfer. Exothermic protonation of 2 also produces 3-oxo-(1H)-oxolanium cation (3 +) which upon collisional neutralization gives hypervalent 3-oxo-(1H)-oxolanium radical (3). The latter dissociates spontaneously by ring opening and expulsion of hydroxy radical. Experiment and calculations suggest that carbohydrate radicals incorporating the 3-hydroxyoxolan-3-yl motif will prefer ring-cleavage dissociations at low internal energies or upon photoexcitation by absorbing light at ∼590 and ∼400 nm.


Hydrogen Atom Abstraction Transition State Energy Unimolecular Dissociation RRKM Calculation High Electronic State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.(a)
    Duff, R. J.; de Vroom, E.; Geluk, A.; Hecht, S. M.; van der Marel, G. A.; van Boom, J. H. Evidence for C-1′ Hydrogen Abstraction from Modified Oligonucleotides by Iron-Bleomycin. J. Am. Chem. Soc. 1993, 115, 3350–3351.CrossRefGoogle Scholar
  2. 1.(b)
    McGall, G. H.; Rablow, L. E.; Ashley, G. W.; Wu, S. H.; Kozarich, J. W.; Stubbe, J. New Insight into the Mechanism of Base Propenal Formation During Bleomycin-Mediated DNA Degradation. J. Am. Chem. Soc. 1992, 114, 4958–4967.CrossRefGoogle Scholar
  3. 1.(c)
    Hangeland, J. J.; De Voss, J. J.; Heath, J. A.; Townsend, C. A. Specific Abstraction of the 5′S- and 4′-Deoxyribosyl Hydrogen Atoms from DNA by Calicheamicin γ1I. J. Am. Chem. Soc. 1992, 114, 9200–9202.CrossRefGoogle Scholar
  4. 1.(d)
    Zein, N.; Poncin, M.; Nilakantan, R.; Ellestad, G. A. Calicheamicin γ1I and DNA: Molecular Recognition Process Responsible for Site-Specificity. Science 1989, 244, 697–699.CrossRefGoogle Scholar
  5. 1.(e)
    Goldberg, I. H. Mechanism of Neocarzinostatin Action: Role of DNA Microstructure in Determination of Chemistry of Bistranded Oxidative Damage. Acc. Chem. Res. 1991, 24, 191–198.CrossRefGoogle Scholar
  6. 1.(f)
    Myers, A. G.; Cohen, S. B.; Kwon, B. M. DNA Cleavage by Neocarzinostatin Chromophore. Establishing the Intermediacy of Chromophore-Derived Cumulene and Biradical Species and Their Role in Sequence-Specific Cleavage. J. Am. Chem. Soc. 1994, 116, 1670–1682.CrossRefGoogle Scholar
  7. 1.(g)
    Sigman, D. S. Nuclease Activity of 1,10-Phenanthroline-Copper Ion. Acc. Chem. Res. 1986, 19, 180–186.CrossRefGoogle Scholar
  8. 1.(h)
    Cheng, C.-C.; Goll, J. G.; Neyhart, G. A.; Welch, T. W.; Singh, P.; Thorp, H. H. Relative Rates and Potentials of Competing Redox Processes during DNA Cleavage: Oxidation Mechanisms and Sequence-Specific Catalysis of the Self-Inactivation of Oxometal Oxidants by DNA. J. Am. Chem. Soc. 1995, 117, 2970–2980.CrossRefGoogle Scholar
  9. 1.(i)
    Neyhart, G. A.; Cheng, C.-C.; Thorp, H. H. Kinetics and Mechanism of the Oxidation of Sugars and Nucleotides by Oxoruthenium (IV): Model Studies for Predicting Cleavage Patterns in Polymeric DNA and RNA. J. Am. Chem. Soc. 1995, 117, 1463–1471.CrossRefGoogle Scholar
  10. 1.(j)
    Greenberg, M. M.; Barvian, M. R.; Cook, G. P.; Goodman, B. K.; Matray, T. J.; Tronche, C.; Venkatesan, H. DNA Damage Induced via 5,6-Dihydrothymid-5-yl in Single-Stranded Oligonucleotides. J. Am. Chem. Soc. 1997, 119, 1828–1839.CrossRefGoogle Scholar
  11. 2.
    Burrows, C. J.; Muller, J. G. Oxidative Nucleobase Modifications Leading to Strand Scission. Chem. Rev. 1998, 98, 1109–1151.CrossRefGoogle Scholar
  12. 3.
    von Sonntag, C. The Chemical Basis of Radiation Damage Taylor and Francis:London, 1987.Google Scholar
  13. 4.
    Knapp-Pogozelski, W.; Tullius, T. D. Oxidative Strand Scission of Nucleic Acids: Routes Initiated by Hydrogen Abstraction from the Sugar Moiety. Chem. Rev. 1998, 98, 1089–1107.CrossRefGoogle Scholar
  14. 5.
    Schuchmann, M. N.; von Sonntag, C. Radiation Chemistry of Carbohydrates. Part 14. Hydroxyl Radical Induced Oxidation of D-Glucose in Oxygenated Aqueous Solution. J. Chem. Soc. Perkin Trans. 1977, 2, 1958–1963.CrossRefGoogle Scholar
  15. 6.
    Madden, K. P.; Fessenden, R. W. ESR Study of the Attack of Photolytically Produced Hydroxyl Radicals on α-Methyl-D-Glucopyranoside in Aqueous Solution. J. Am. Chem. Soc. 1982, 104, 2578–2581.CrossRefGoogle Scholar
  16. 7.
    Kochetkov, N. K.; Kudrjashov, L. I.; Chlenov, M. A. Radiation Chemistry of Carbohydrates; Pergamon Press:Oxford,1979.Google Scholar
  17. 8.
    Meschwitz, S. M.; Schultz, R. G.; Ashley, G. W.; Goldberg, I. H. Selective Abstraction of Deuterium from C-1′ of the C Residue in AGC.ICT by the Radical Center at C-2 of Activated Neocarzinostatin Chromophore: Structure of the Drug/DNA Complex Responsible for Bistranded Lesion Formation. Biochemistry. 1992, 31, 9117–9121.CrossRefGoogle Scholar
  18. 9.
    Pitie, M.; Bernadou, J.; Meunier, B. Oxidation at Carbon-1′ of DNA Deoxyriboses by the Mn-TMPyP/KHSO5 System Results from a Cytochrome P-450-type Hydroxylation Reaction. J. Am. Chem. Soc. 1995, 117, 2935–2936.CrossRefGoogle Scholar
  19. 10.
    Kappen, L. S.; Goldberg, I. H. Identification of 2-Deoxyribonolactone at the Site of Neocarzinostatin-Induced Cytosine Release in the Sequence d(AGC). Biochemistry. 1989, 28, 1027–1032.CrossRefGoogle Scholar
  20. 11.
    Goyne, T. E.; Sigman, D. S. Nuclease activity of 1,10-Phenanthroline-Copper Ion. Chemistry of Deoxyribose Oxidation. J. Am. Chem. Soc. 1987, 109, 2846–2848.CrossRefGoogle Scholar
  21. 12.
    Goodman, B. K.; Greenberg, M. M. Independent Generation and Reactivity of 2′-Deoxyurid-1′-yl. J. Org. Chem. 1996, 61, 2–3.CrossRefGoogle Scholar
  22. 13.
    Deycard, S.; Lusztyk, J.; Ingold, K. U.; Zerbetto, F.; Zgierski, M. Z.; Siebrand, W. Inversion of the Dioxolanyl Radical: An Experimental and Theoretical Study. J. Am. Chem. Soc. 1990, 112, 4284–4290.CrossRefGoogle Scholar
  23. 14.
    Malatesta, V.; Ingold, K. U. Kinetic Applications of Electron Paramagnetic Resonance Spectroscopy. 36. Stereoelectronic Effects in Hydrogen Atom Abstraction from Ethers. J. Am. Chem. Soc. 1981, 103, 609–614.CrossRefGoogle Scholar
  24. 15.
    Beckwith, A. L. J.; Easton, C. J. Stereoelectronic Effects in Hydrogen Atom Abstraction from Substituted 1,3-Dioxanes. J. Am. Chem. Soc. 1981, 103, 615–619.CrossRefGoogle Scholar
  25. 16.(a)
    for the most recent reviews of the technique see: (a) Turecek, F. Transient Intermediates of Chemical Reactions by Neutralization-Reionization Mass Spectrometry. Top. Curr. Chem. 2003, 225, 77–129.CrossRefGoogle Scholar
  26. 16.(b)
    Zagorevskii, D. V.; Holmes, J. L. Neutralization-Reionization Mass Spectrometry Applied to Organometallic and Coordination Chemistry (Update: 1914–1998). Mass Spectrom. Rev. 1999, 18, 87–118.CrossRefGoogle Scholar
  27. 16.(c)
    Schalley, C. A.; Hornung, G.; Schroder, D.; Schwarz, H. Mass Spectrometric Approaches to the Reactivity of Transient Neutrals. Chem. Soc. Rev 1998, 27, 91–104.CrossRefGoogle Scholar
  28. 17.
    Nguyen, V. Q.; Tureček, F. Protonation Sites in Gaseous Pyrrole and Imidazole and the Stabilities of Their Radicals. J. Mass Spectrom. 1996, 31, 1173–1184.CrossRefGoogle Scholar
  29. 18.
    Nguyen, V. Q.; Tureček, F. Gas-Phase Protonation of Pyridine. A Variable-Time Neutralization-Reionization and Ab Initio Study of Pyridinium Radicals. J. Mass Spectrom. 1997, 32, 55–63.CrossRefGoogle Scholar
  30. 19.
    Nguyen, V. Q.; Tureček, F. Protonation Sites in Pyrimidine and Pyrimidinamines in the Gas Phase. J. Am. Chem. Soc. 1997, 119, 2280–2290.CrossRefGoogle Scholar
  31. 20.
    Wolken, J. K.; Syrstad, E. A.; Vivekananda, S.; Tureček, F. Uracil Radicals in the Gas Phase. Specific Generation and Energetics. J. Am. Chem. Soc. 2001, 123, 5804–5805.CrossRefGoogle Scholar
  32. 21.
    Syrstad, E. A. ; Vivekananda, S.; Tureček, F. Direct Observation of a Hydrogen Atom Adduct to C-5 in Uracil. A Neutralization-Reionization Mass Spectrometric and ab Initio Study. J. Phys. Chem. A. 2001, 105, 8339–8351.CrossRefGoogle Scholar
  33. 22.
    Wolken, J. K.; Tureček, F. Direct Observation of a Hydrogen Atom Adduct to O-4 in Uracil. A Neutralization-Reionization Mass Spectrometric and ab Initio Study. J. Phys. Chem. A. 2001, 105, 8352–8360.CrossRefGoogle Scholar
  34. 23.
    Tureček, F.; Gu, M.; Hop, C. E. C. A. Franck-Condon Dominated Chemistry. Formation and Dissociations of Tetrahydroxyphosphoranyl Radicals Following Femtosecond Reduction of Their Cations in the Gas Phase. J. Phys. Chem. 1995, 99, 2278–2291.CrossRefGoogle Scholar
  35. 24.
    Tureček, F. Modeling Nucleobase Radicals in the Mass Spectrometer. J. Mass Spectrom. 1998, 33, 779–795.CrossRefGoogle Scholar
  36. 25.
    Vivekananda,S.; Sadilek,M.; Chen,X.; Tureček,F. Modeling Deoxyribose Radicals by Neutralization-Reionization Mass Spectrometry. Part 1. Preparation, Dissociations, and Energetics of 2-Hydroxyoxolan-2-yl Radical, Neutral Isomers, and Cations. J. Am. Soc. Mass Spectrom. 2004, 15 preceding paper in this issue.Google Scholar
  37. 26.
    Holmes, J. L. The Neutralization of Organic Cations. Mass Spectrom. Rev. 1989, 8, 513–539.CrossRefGoogle Scholar
  38. 27.
    Taylor, E. C.; Macor, J. E. Synthesis of Pyridines by Diels-Alder Reactions of Hetero-Substituted 1,2,4-Triazines with Enamines and an Enaminone. J. Org. Chem. 1989, 54, 1249–1256.CrossRefGoogle Scholar
  39. 28.
    Tureček, F.; Gu, M.; Shaffer, S. A. A Novel Tandem Quadrupole Acceleration-Deceleration Mass Spectrometer for Neutralization-Reionization Studies. J. Am. Soc. Mass Spectrom. 1992, 3, 493–501.CrossRefGoogle Scholar
  40. 29.
    Kuhns, D. W.; Shaffer, S. A.; Tran, T. B.; Tureček, F. The Methylthiomethyl Radical. A Variable-Time Neutralization-Reionization and ab Initio Study. J. Phys. Chem. 1994, 98, 4845–4853.CrossRefGoogle Scholar
  41. 30.
    Kuhns, D. W.; Tureček, F. Unimolecular Neutral and Ion Kinetics by Variable-Time Neutralization-Reionization Mass Spectrometry. Org. Mass Spectrom. 1994, 29, 463–469.CrossRefGoogle Scholar
  42. 31.
    Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A.6 Gaussian, Inc:Pittsburgh PA, 1998.Google Scholar
  43. 32.(a)
    Becke, A. D. A New Mixing of Hartree-Fock and Local-Density-Functional Theories. J. Chem. Phys. 1993, 98, 1372–1377.CrossRefGoogle Scholar
  44. 32.(b)
    Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652.CrossRefGoogle Scholar
  45. 33.
    Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627.CrossRefGoogle Scholar
  46. 34.
    Mayer, I. Spin-projected EHF method. IV. Comparison of Potential Curves Given by Different One-Electron Methods. Adv. Quantum Chem. 1980, 12, 189–262.CrossRefGoogle Scholar
  47. 35.
    Schlegel, H. B. Potential Energy Curves Using Unrestricted Moeller-Plesset Perturbation Theory with Spin Annihilation. J. Chem. Phys. 1986, 84, 4530–4534.CrossRefGoogle Scholar
  48. 36.
    Rauhut, G.; Pulay, P. Transferable Scaling Factors for Density Functional Derived Vibrational Force Fields. J. Phys. Chem. 1995, 99, 3093–3100.CrossRefGoogle Scholar
  49. 37.
    Curtiss, L. A.; Raghavachari, K.; Pople, J. A. Gaussian-2 Theory Using Reduced Moeller-Plesset Orders. J. Chem. Phys. 1993, 98, 1293–1298.CrossRefGoogle Scholar
  50. 38.
    Pople, J. A.; Head-Gordon, M.; Raghavachari, K. Quadratic Configuration Interaction. A General Technique for Determining Electron Correlation Energies. J. Chem. Phys. 1987, 87, 5968–5975.CrossRefGoogle Scholar
  51. 39.
    Møller, C.; Plesset, M. S. Note on an Approximation Treatment for Many-Electron Systems. Phys. Rev. 1934, 46, 618–622.CrossRefGoogle Scholar
  52. 40.
    Tureček, F.; Yao, C. Hydrogen Atom Addition to Cytosine, 1-Methylcytosine, and Cytosine-Water Complexes. A Computational Study of a Mechanistic Dichotomy. J. Phys. Chem A. 2003, 107, 9221–9231.CrossRefGoogle Scholar
  53. 41.
    Tureček, F.; Syrstad, E. A. Mechanism and Energetics of Intramolecular Hydrogen Transfer Atom Transfer in Amide and Peptide Radicals and Cation-Radicals. J. Am. Chem. Soc. 2003, 125, 3353–3369.CrossRefGoogle Scholar
  54. 42.
    Tureček, F.; Vivekananda, S.; Sadílek, M.; Polášek, M. Lactone Enol Cation-Radicals: Gas-Phase Generation, Structure, Energetics, and Reactivity of the Ionized Enol of Butane-4-lactone. J. Mass Spectrom. 2002, 37, 829–839.CrossRefGoogle Scholar
  55. 43.
    Tureček, F. Proton Affinity of Dimethyl Sulfoxide and Relative Stabilities of C2H6OS Molecules and C2H7OS+ Ions. J. Phys. Chem. A. 1998, 102, 4703–4713.CrossRefGoogle Scholar
  56. 44.
    Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. An Efficient Implementation of Time-Dependent Density-Functional Theory for the Calculation of Excitation Energies of Large Molecules. J. Chem. Phys. 1998, 109, 8218–8224.CrossRefGoogle Scholar
  57. 45.
    Zhu, L., Hase, W. L. Quantum Chemistry Program Exchange; Indiana University: Bloomington, IN, 1994; Program No. QCPE 644.Google Scholar
  58. 46.
    Frank, A. J.; Sadílek, M.; Ferrier, J. G.; Tureček, F. Sulfur Oxyacids and Radicals in the Gas Phase. A Variable-Time Neutralization-Photoexcitation-Reionization Mass Spectrometric and ab Initio/RRKM Study. J. Am. Chem. Soc. 1997, 119, 12343–12353.CrossRefGoogle Scholar
  59. 47.
    NIST Standard Reference Database No. 69; February 2000 Release; Scholar
  60. 48.
    Raksit, A. B.; Porter, R. F. Direct Experimental Observations of Metastability in the (Dideuterio)Methyloxonium Radical. J. Chem. Soc. Chem. Commun. 1987, 500–501.Google Scholar
  61. 49.
    Wesdemiotis, C.; Fura, A.; McLafferty, F. W. Protonated Ethanol and Its Neutral Counterparts. J. Am. Soc. Mass Spectrom. 1991, 2, 459–463.CrossRefGoogle Scholar
  62. 50.
    Holmes, J. L.; Sirois, M. Hypervalent Radicals; the Generation of CH3O(H)CH3, CH3O(H)C2H5 and their O-(D) Analogs by Neutralization of the Corresponding Cations. Org. Mass Spectrom. 1990, 25, 481–482.CrossRefGoogle Scholar
  63. 51.
    Sadílek, M.; Tureček, F. Probing Hypervalent Radicals by Neutralization-Laser Photoionization Mass Spectrometry. J. Phys. Chem. 1996, 100, 9610–9614.CrossRefGoogle Scholar
  64. 52.
    Tureček, F.; Reid, P. J. Metastable States of Dimethyloxonium, (CH3)2OH. Int. J. Mass Spectrom. 2003, 222, 49–61.CrossRefGoogle Scholar
  65. 53.
    Dua, S.; McAnoy, A. M.; Blumenthal, T.; Bowie, J. H. Does the Radical Me3O Exist in the Gas Phase? A Joint Experimental and Theoretical Study. Int. J. Mass Spectrom. 2003, 230, 77–84.CrossRefGoogle Scholar
  66. 54.
    Tureček, F. The Modern Mass Spectrometer. A Laboratory for Unstable Neutral Species. Org. Mass Spectrom. 1992, 27, 1087–1097.CrossRefGoogle Scholar
  67. 55.
    Mathematica, Version 5.0; Wolfram Research, Inc.: Champaign, IL, 2003Google Scholar
  68. 56.
    Tureček, F. The Use of Kinetic Isotope Effects for the Determination of Internal Energy Distributions of Isolated Transient Species in the Gas Phase. Int. J. Mass Spectrom. 2003, 227, 327–338.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2004

Authors and Affiliations

  • Shetty Vivekananda
    • 1
  • Martin Sadílek
    • 1
  • Xiaohong Chen
    • 1
  • Luke E. Adams
    • 1
  • František Tureček
    • 1
  1. 1.Department of ChemistryUniversity of WashingtonSeattleUSA

Personalised recommendations