MSn characterization of protonated cyclic peptides and metal complexes

Focus: McLafferty Rearrangement


MSn experiments involving low energy collisionally activated dissociation (CAD) in a quadrupole ion trap were used to characterize the fragmentation of alkali, alkaline earth and transition metal complexes of five cyclic peptides, and the results were compared with those obtained for protonated cyclic peptides. Complexes with metal ions produced enhanced abundances of the most diagnostic fragments for elucidating the primary structures. For cyclosporin A, nickel and lithium complexes gave additional sequence information compared with the protonated peptide. For depsipeptides, sodium and lead complexes were superior to the protonated peptide or other metal complexes for sequencing residues, and CAD of the lead complexes led to preferential cleavage of two residues at a time. For cyclic lipopeptides, complexes with silver, nickel and strontium ions provided enhanced abundances of key fragment ions.


Surfactin Cyclic Peptide Valinomycin Collisionally Activate Dissociation Sodium Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davies, J. S. Cyclic Peptides. In Cyclic Polymers, 2nd ed.; Semlyen, J.; Anthony, E., Eds.; Kluwer Academic Publishers: Dordrecht, Netherlands, 2000, 85–124.Google Scholar
  2. 2.
    Faulkner, D. J. Marine Natural Products. Nat. Prod. Rep. 1988, 5, 613–663.CrossRefGoogle Scholar
  3. 3.
    Rosen, M. K., Schreiber, S. L. Natural Products as Probes in the Study of Cellular Functions: Investigation of Immunophilins. Angew. Chem. 1992, 104, 413–430 and Angew. Chem. Int. Ed. Engl. 1992, 31, 384–400.CrossRefGoogle Scholar
  4. 4.
    Fusetani, N.; Sugawara, T.; Matsunaga, S.; Hirota, H. Orbiculamide A: A Novel Cytotoxic Cyclic Peptide from a Marine Sponge Theonella Sp. J. Am. Chem. Soc. 1991, 113, 7811–7812.CrossRefGoogle Scholar
  5. 5.
    Fairlie, D. P.; Abbenante, G.; March, D. R. Macrocyclic Peptidomimetics—Forcing Peptides into Bioactive Conformations. Curr. Med. Chem. 1995, 2, 654–686.Google Scholar
  6. 6.
    Breithaupt, H. The New Antibiotics. Nature Biotech 1999, 17, 1165–1169.CrossRefGoogle Scholar
  7. 7.
    Kohil, R. M.; Walsh, C. T.; Burkart, M. D. Biomimetic Synthesis and Optimization of Cyclic Peptide Antibiotics. Nature 2002, 418, 658–661.CrossRefGoogle Scholar
  8. 8.
    Van Dyke, M. I.; Lee, H.; Trevors, J. T. Applications of Microbial Surfactants. Biotechnol. Adv. 1991, 9, 241–252.CrossRefGoogle Scholar
  9. 9.
    Jonsson, A. Mass Spectrometry for Protein and Peptide Characterization. Cell. Mol. Life Sci. 2001, 58, 868–884.CrossRefGoogle Scholar
  10. 10.
    Yates, J. R. Mass Spectrometry and the Age of the Proteome. J. Mass Spectrom. 1998, 33, 1–19.CrossRefGoogle Scholar
  11. 11.
    Papayannopoulos, I. A. The Interpretation of Collision-Induced Dissociation Tandem Mass Spectra of Peptides. Mass Spectrom. Rev. 1995, 14, 49–73.CrossRefGoogle Scholar
  12. 12.
    Skold, K.; Svensson, M.; Kaplan, A.; Bjorkesten, L.; Astrom, J.; Andren, P. E. A Neuroproteomic Approach to Targeting Neuropeptides in the Brain. Proteomics 2002, 2, 447–454.CrossRefGoogle Scholar
  13. 13.
    Johnson, R. S. Automated Interpretation of Peptide Tandem Mass Spectra and Homology Searching. In Proteome Research: Mass Spectrometry; James, P., Ed.; Spinger-Verlag: Berlin, Germany, 2001; 167–185.Google Scholar
  14. 14.
    Kapp, E. A.; Schuetz, F.; Reid, G. E.; Eddes, J. S.; Moritz, R. L.; O’Hair, R. A. J.; Speed, T. P.; Simpson, R. J. Mining a Tandem Mass Spectrometry Database to Determine the Trends and Global Factors Influencing Peptide Fragmentation. Anal. Chem. 2003, 75, 6251–6264.CrossRefGoogle Scholar
  15. 15.
    Redman, J. E.; Wilcoxen, K. M.; Ghadiri, M. R. Automated Mass Spectrometric Sequence Determination of Cyclic Peptide Library Members. J. Comb. Chem. 2003, 5, 33–40.CrossRefGoogle Scholar
  16. 16.
    Gross, M. L.; McCrery, D.; Crow, F.; Tomer, K. B.; Pope, M. R.; Ciuffetti, L. M.; Knoche, H. W.; Daly, J. M.; Dunkle, L. D. The Structure of the Toxin from Helminthosporium Carbonum. Tetrahedron Lett 1982, 23, 5381–5384.CrossRefGoogle Scholar
  17. 17.
    Aubagnac, J. L.; Devienne, F. M.; Combarieu, R. Use of MIKE Spectrum or CID/MIKE Spectrum of a Quasi-Molecular or Cationized Ion Obtained by the MBSA-FAB Method in Order to Characterize a Polar Compound. Tetrahedron Lett 1983, 24, 2263–2266.CrossRefGoogle Scholar
  18. 18.
    Eckart, K. Mass Spectrometry of Cyclic Peptides. Mass Spectrom. Rev. 1994, 13, 23–55.CrossRefGoogle Scholar
  19. 19.
    Ngoka, L. C.; Gross, M. L Multistep Tandem Mass Spectrometry for Sequencing Cyclic Peptides in an Ion-Trap Mass Spectrometer. J. Am. Soc. Mass Spectrom. 1999, 10, 732–746.CrossRefGoogle Scholar
  20. 20.
    Zweigenbaum, J. A.; Henion, J. D.; Beattie, K. A.; Codd, G. A.; Poon, G. K. Direct Analysis of Microcystins by Microbore Liquid Chromatography Electrospray Ionization Ion-Trap Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2000, 23, 723–733.CrossRefGoogle Scholar
  21. 21.
    Cavelier, F.; Enjalbal, J. M.; Roque, M.; Sanchez, P.; Aubagnac, J.-L. Comparison of Collisionally Dissociation Mass Spectra for the Identification of Cyclopeptides and Cyclodepsipeptides. Rapid Commun. Mass Spectrom. 1999, 13, 880–885.CrossRefGoogle Scholar
  22. 22.
    Havlicek, V.; Jegorov, A.; Sedmera, P. Mass Spectrometry of Cyclosporins New Advances in Analytical Chemistry; Atta-ur-Rahman, E., Ed.; Harwood Academic Publishers: Amsterdam, The Netherlands, 2000, P2/339-P2/368.Google Scholar
  23. 23.
    Sheil, M. M.; Kilby, G. W.; Curtis, J. M.; Bradley, C. D.; Derrick, P. J. Low-Energy Tandem Mass Spectra of the Cyclic Depsipeptide Valinomycin-A Comparison with Four-Sector Tandem Mass Spectra. Org. Mass Spectrom. 1993, 28, 574–576.CrossRefGoogle Scholar
  24. 24.
    Yin, J.; Aviles, P.; Lee, W.; Ly, C.; Floriano, P.; Ignacio, M.; Faircloth, G. Development of a Liquid Chromatography/Tandem Mass Spectrometry Assay for the Quantification of Aplidin, a Novel Marine-Derived Antineoplastic Agent, in Human Plasma. Rapid Commun. Mass Spectrom. 2003, 17, 1909–1914.CrossRefGoogle Scholar
  25. 25.
    Stokvis, E.; Rosing, H.; Lopez-Lazaro, L.; Rodriguez, I.; Jimeno, J. M.; Supko, J. G.; Schellens, J. H. M.; Beijnen, J. H. Quantitative Analysis of the Novel Depsipeptide Anticancer Drug Kahalalide F in Human Plasma by High-Performance Liquid Chromatography under Basic Conditions Coupled to Electrospray Ionization Tandem Mass Spectrometry. J. Mass Spectrom. 2002, 37, 992–1000.CrossRefGoogle Scholar
  26. 26.
    Cho, S.-J.; Lee, S. K.; Cha, B. J.; Kim, Y. H.; Shin, K.-S. Detection and Characterization of the Gloeosporium Gloeosporioides Growth Inhibitory Compound Iturin A from Bacillus Subtilis Strain KS03. FEMS Microbiol. Lett. 2003, 223, 47–51.CrossRefGoogle Scholar
  27. 27.
    Ishikawa, K.; Niwa, Y.; Oishi, K.; Aoi, S.; Takeuchi, T.; Wakayama, S. Sequence Determination of Unknown Cyclic Peptide Antibiotics by Fast Atom Bombardment Mass Spectrometry. Biomed. Environ. Mass Spectrom. 1990, 19, 395–399.CrossRefGoogle Scholar
  28. 28.
    Hue, N.; Serani, L.; Laprevote, O. Structural Investigation of Cyclic Peptidolipids from Bacillus Subtilis by High-Energy Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2001, 15, 203–209.CrossRefGoogle Scholar
  29. 29.
    Oka, K.; Hirano, T.; Homma, M.; Ishii, H.; Murakami, K.; Mogami, S.; Motizuki, A.; Morita, H.; Takeya, K.; Itokawa, H. Satisfactory Separation and MS-MS Spectrometry of Six Surfactins Isolated from Bacillus Subtilis Natto. Chem. Pharm. Bull. 1993, 41, 1000–1002.CrossRefGoogle Scholar
  30. 30.
    Madonna, A. J.; Voorhees, K. J.; Taranenko, N. I.; Laiko, V. V.; Doroshenko, V. M. Detection of Cyclic Lipopeptide Biomarkers from Bacillus Species using Atmospheric Pressure Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal. Chem. 2003, 75, 1628–1637.CrossRefGoogle Scholar
  31. 31.
    Gatlin, C. L.; Turecek, F. Electrospray Ionization of Inorganic and Organometallic Complexes In Electrospray Ionization Mass Spectrometry: Fundamentals, Instrumentation, and Applications; Cole, R.B., Ed.; Wiley: New York, NY, 1997; 527–570.Google Scholar
  32. 32.
    Colton, R.; D’Agostino, A.; Traeger, J. C. Electrospray Mass Spectrometry Applied to Inorganic and Organometallic Chemistry. Mass Spectrom. Rev. 1995, 14, 79–106.CrossRefGoogle Scholar
  33. 33.
    Ngoka, L. C. M.; Gross, M. L. Location of Alkali Metal Binding Sites in Endothelin A Selective Antagonists, Cyclo(D-Trp-D-Asp-Pro-D-Val-Leu) and Cyclo(D-Trp-D-Asp-Pro-D-Ile-Leu), from Multistep Collisionally Activated Decompositions. J. Mass Spectrom. 2000, 35, 265–276.CrossRefGoogle Scholar
  34. 34.
    Ngoka, L. C. M.; Gross, M. L. Multistep Collisionally Activated Decomposition in an Ion Trap for the Determination of the Amino-Acid Sequence and Gas Phase Ion Chemistry of Lithium-Coordinated Valinomycin. Int. J. Mass Spectrom. 2000, 194, 247–259.CrossRefGoogle Scholar
  35. 35.
    Lambert, C. M. N.; Gross, M. L.; Toogood, P. L. Sodium-Directed Selective Cleavage of Lactones: A Method for Structure Determination of Cyclodepsipeptides. Int. J. Mass Spectrom. 1999, 182/183, 289–298.CrossRefGoogle Scholar
  36. 36.
    Lin, S.; Liehr, S.; Cooperman, B. S.; Cotter, R. J. Sequencing Cyclic Peptide Inhibitors of Mammalian Ribonuclease Reductase by Electrospray Ionization Mass Spectrometry. J. Mass Spectrom. 2001, 36, 658–663.CrossRefGoogle Scholar
  37. 37.
    Hue, N.; Serani, L.; Laprevote, O. Structural Investigation of Cyclic Peptolipids from Bacillus Subtillis by High-Energy Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2001, 15, 203–209.CrossRefGoogle Scholar
  38. 38.
    Jayawargene, D.; Dass, C. Fragmentation Characterstics of Peptide-Metal Ion Adducts under Matrix-Assisted Laser Desorption/Ionization Post-Source Decay Time-of-Flight Mass Spectrometric Conditions. J. Mass. Spectrom. 2002, 37, 389–394.CrossRefGoogle Scholar
  39. 39.
    Rodriquez, C. F.; Fournier, R.; Chu, I. K.; Hopkinson, A. C.; Siu, K. W. M. A Possible Origin of [M − nH + mX](m − n)+ Ions (X = Alkali Metal Ions) in Electrospray Mass Spectrometry of Peptides. Int. J. Mass. Spectrom. 1999, 192, 303–317.CrossRefGoogle Scholar
  40. 40.
    Hu, P.; Loo, J. A. Gas-Phase Coordination Properties of Zn2+, Cu2+, Ni2+, and Co2+ with Histidine-Containing Peptides. J. Am. Chem. Soc. 1995, 117, 11314–11319.CrossRefGoogle Scholar
  41. 41.
    Hu, P.; Gross, M. L. Gas-Phase Interactions of Transition-Metal Ions and Di- and Tripeptides: A Comparison with Alkaline-Earth-Metal-Ion Interactions. J. Am. Chem. Soc. 1993, 115, 8821–8828.CrossRefGoogle Scholar
  42. 42.
    Lee, V. W.-M.; Li, H.; Lau, T.-C.; Siu, K. W. M. Structure of b and a Product Ions from the Fragmentation of Argentinated Peptides. J. Am. Chem. Soc. 1998, 120, 7309.Google Scholar
  43. 43.
    Afonso, C.; Hathout, Y.; Fenselau, C. Qualitative Characterization of Biomolecular Zinc Complexes by Collisionally Induced Dissociation. J. Mass Spectrom. 2002, 37, 755–759.CrossRefGoogle Scholar
  44. 44.
    Vaisar, T.; Gatlin, C. L.; Rao, R. D.; Seymour, J. L.; Turecek, F. Sequence Information, Distinction and Quantitation of C-Terminal Leucine and Isoleucine in Ternary Complexes of Tripeptides with Cu(II) and 2,2’-Bipyridine. J. Mass Spectrom. 2001, 36, 306–316.CrossRefGoogle Scholar
  45. 45.
    Chu, I. K.; Shoeib, T.; Guo, X.; Rodriquez, C. F.; Lau, T.-C.; Hopkinson, A. C.; Siu, K. W. M. Characterization of the Product Ions from the Collision Induced Dissociation of Argentinated Peptides. J. Am. Soc. Mass Spectrom. 2001, 12, 163–175.CrossRefGoogle Scholar
  46. 46.
    Chu, I. K.; Cox, D. M.; Guo, X.; Kireeva, I.; Lau, T.-C.; McDermott, J. C.; Siu, K. W. M. Sequencing of Argentinated Peptides by Means of Matrix-Assisted Laser Desorption/Ionization Tandem Mass Spectrometry. Anal. Chem. 2002, 74, 2072–2082.CrossRefGoogle Scholar
  47. 47.
    Chu, I. K.; Guo, X.; Lau, T.-C.; Siu, K. W. M. Sequencing of Argentinated Peptides by Means of Electrospray Tandem Mass Spectrometry. Anal. Chem. 1999, 71, 2364–2372.CrossRefGoogle Scholar
  48. 48.
    Barr, J. M.; Van Stipdonk, M. J. Multi-Stage Tandem Mass Spectrometry of Metal Cationized Leucine Enkephalin and Leucine Enkephalin Amide. Rapid Commun. Mass Spectrom. 2002, 16, 566–578.CrossRefGoogle Scholar
  49. 49.
    Kish, M. K.; Wesdemiotis, C. Selective Cleavage at Internal Lysine Residues in Protonated versus Metalated Peptides. Int. J. Mass Spectrom. 2003, 227, 191–203.CrossRefGoogle Scholar
  50. 50.
    Lin, T.; Payne, A. H.; Glish, G. L. Dissociation Pathways of Alkali-Cationized Peptides: Opportunities for C-Terminal Peptide Sequencing. J. Am. Soc. Mass Spectrom. 2001, 12, 497–504.CrossRefGoogle Scholar
  51. 51.
    Wenger, R. M. Cyclosporine and Analogs: Isolation and Synthesis. Mechanism of Action and Structural Requirements for Pharmacological Activity. Prog. Chem. Org. Nat. Prod. 1986, 50, 123–168.Google Scholar
  52. 52.
    Fernandez-Lopez, S.; Kim, H.-S.; Choi, E. C.; Delgado, M.; Granja, J. R.; Khasanov, A.; Kraehenbuehl, K.; Long, G.; Weinberger, D. A.; Wilcoxen, K. M.; Ghadiri, M. R. Antibacterial Agents Based on the Cyclic D-L-α-Peptide Architecture. Nature 2001, 412, 452–455.CrossRefGoogle Scholar
  53. 53.
    Visconti, A.; Blais, L. A.; ApSimon, J. W.; Greenhalgh, R.; Miller, J. D. Production of Enniatins by Fusarium Acuminatum and Fusarium Compactum in Liquid Culture: Isolation and Characterization of Three New Enniatins, B2, B3, and B4. J. Agric. Food Chem. 1992, 40, 1076–1082.CrossRefGoogle Scholar
  54. 54.
    Ngoka, L. C. M.; Gross, M. L. A. A Nomenclature System for Labeling Cyclic Peptide Fragments. J. Am. Soc. Mass Spectrom. 1999, 10, 360–363.CrossRefGoogle Scholar
  55. 55.
    Shields, S. J.; Bluhm, B. K.; Russell, D. H. Fragmentation Chemistry of [M + Cu]+ Peptide Ions Containing an N-terminal Arginine. J. Am. Soc. Mass Spectrom. 2000, 11, 626–638.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2004

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryThe University of Texas at AustinAustinUSA

Personalised recommendations