Meisenheimer complexes bonded at carbon and at oxygen

  • Hao Chen
  • Huanwen Chen
  • R. Graham Cooks
Focus: McLafferty Rearrangement


The carbon-bonded gas-phase Meisenheimer complex of 2,4,6-trinitrotoluene (TNT) and the nitromethyl carbanion CH2NO 2 (m/z 60) is generated for the first time by chemical ionization using nitromethane as the reagent gas. Collision-induced dissociation (CID) of the Meisenheimer complex furnishes deprotonated TNT, a result of the higher gas-phase acidity of TNT than nitromethane. The formation of Meisenheimer complexes with CH2NO 2 in the gas phase is selective to highly electron-deficient compounds such as dinitrobenzene and trinitrobenzene and does not occur with organic molecules with lower electron-affinity such as methanol, methylamine, propionaldehyde, acetone, ethyl acetate, chloroform, toluene, m-methoxytoluene, and even nitrobenzene and p-fluoronitrobenzene. As such, the reaction allows selective detection of TNT in mixtures. Meisenheimer complexes between CH2NO 2 and the three dinitrobenzene isomers display distinctive fragmentations. The oxygen-bonded σ-complex of TNT with the deprotonated hemiacetal anion CH3OCH 2 (m/z 61), represents a different type of Meisenheimer complex. It displays characteristic fragmentation involving loss of HNO2 upon CID. The combination of a selective ion/molecule reaction (Meisenheimer complex formation) followed by a characteristic CID process provides a second novel and highly selective approach to the detection of TNT and closely related compounds in mixtures. The assay is readily implemented using neutral loss scans in a triple quadrupole mass spectrometer. Gas-phase reactions of denitrosylated TNT with benzaldehyde produce the corresponding dihydrofuran in an aldol condensation, a result that parallels the corresponding condensed-phase reaction.


HCHO Nitromethane DMMP PhCHO Neutral Loss Scan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Jackson, C. J.; Gazzolo, F. H. On Certain Colored Substances Derived from Nitro Compounds. CXVII. Am. Chem. J. 1900, 23, 376.Google Scholar
  2. 2.
    Meisenheimer, J. Ueber Reactionen Aromatischer Nitro Korper. Justus Liebigs Ann. Chem. 1902, 323, 205.CrossRefGoogle Scholar
  3. 3.
    Terrier, F. Rate and Equilibrium Studies in Jackson-Meisenheimer Complexes. Chem. Rev. 1982, 82, 77.CrossRefGoogle Scholar
  4. 4.
    Buncel, E.; Dust, J. M.; Terrier, F. Rationalizing the Regioselectivity in Polynitroarene Anionic σ-Adduct Formation. Relevance to Nucleophilic Aromatic Substitution. Chem. Rev. 1995, 95, 2261.CrossRefGoogle Scholar
  5. 5.
    Strauss, M. J. Anionic Sigma Complexes. Chem. Rev. 1970, 70, 667.CrossRefGoogle Scholar
  6. 6.
    Crampton, M. R. Meisenheimer Complexes. Adv. Phys. Org. Chem. 1969, 7; p 211.Google Scholar
  7. 7.
    Zheng, Y.-J.; Ornstein, R. L. Mechanism of Nucleophilic Aromatic Substitution of 1-Chloro-2,4-Dinitrobenzene by Glutathione in the Gas Phase and in Solution. Implications for the Mode of Action of Glutathione S-Transferases. J. Am. Chem. Soc. 1997, 119, 648.CrossRefGoogle Scholar
  8. 8.
    Buncel, E.; Tarkka, R. M.; Dust, J. M. AM1 Studies on the Stabilities of Anionic σ-Complex Regioisomers: Thermodynamics of Regioselectivity in the Reaction of Methide, Methoxide, and Hydroxide Anions with Electron-Deficient Aromatics. Can. J. Chem. 1994, 72, 1709.CrossRefGoogle Scholar
  9. 9.
    Simkin, B. Y.; Gluz, E. B.; Glukhovtsev, M. N.; Minkin, V. I. Theoretical Study of Mechanisms of Aromatic Nucleophilic Substitution in the Gas Phase. Themochem. 1993, 103, 123.CrossRefGoogle Scholar
  10. 10.
    Strauss, M. J.; Fleischman, S.; Buncel, E. A Theoretical Investigation by the MNDO Method of the Explosive Complexes of Hydroxide Ion with 1,3,5-Trinitrobenzene and 4,6-Dinitrobenzofuroxan. Themochem. 1985, 22, 37.CrossRefGoogle Scholar
  11. 11.
    Briscese, S. M. J.; Riveros, J. M. Gas Phase Nucleophilic Reactions of Aromatic Systems. J. Am. Chem. Soc. 1975, 97, 230.CrossRefGoogle Scholar
  12. 12.
    Ingemann, S.; Nibbering, N. M. M.; Sullivan, S. A.; DePuy, C. H. Nucleophilic Aromatic Substitution in the Gas Phase: The Importance of Fluoride Ion/Molecule Complexes Formed in Gas-Phase Reactions between Nucleophiles and Some Alkyl Pentafluorophenyl Ethers. J. Am. Chem. Soc. 1982, 104, 6520.CrossRefGoogle Scholar
  13. 13.
    Ingemann, S.; Nibbering, N. M. M. Gas-Phase Reactions of Anions with 2-, 3-, and 4-Fluoroanisole. J. Org. Chem. 1983, 48, 183.CrossRefGoogle Scholar
  14. 14.
    Bowie, J. H.; Stapleton, B. J. Electron Impact Studies. CXIII. Aromatic Nucleophilic Substitution in the Gas Phase. The Dinitrobenzenes. An Ion Cyclotron Resonance Study. Aust. J. Chem. 1977, 30, 795.CrossRefGoogle Scholar
  15. 15.
    Dillow, G. W.; Kebarle, P. Fluoride Affinities of Perfluorobenzenes C6F5X. Meisenheimer Complexes in the Gas Phase and Solution. J. Am. Chem. Soc. 1988, 110, 4877.CrossRefGoogle Scholar
  16. 16.
    Paul, G.; Kebarle, P. Stabilities of Complexes of Br with Substituted Benzenes (SB) Based on Determination of the Gas-Phase Equilibria Br + SB = (BrSB). J. Am. Chem. Soc. 1991, 113, 1148–1154.CrossRefGoogle Scholar
  17. 17.
    Yinon, J.; Johnson, J.; Bernier, U. R.; Yost, R. A.; Mayfield, H. T.; Mahone, W. C.; Vorbeck, C. Reactions in the Mass Spectrometry of a Hydride Meisenheimer Complex of 2,4,6-Trinitrotoluene (TNT). J. Mass Spectrom. 1995, 30, 715–722.CrossRefGoogle Scholar
  18. 18.
    Heath, T. G.; Allison, J.; Watson, J. T. Selective Detection of the Tolyl Cation among Other [C7H7] Isomers by Ion/Molecule Reaction with Dimethyl Ether. J. Am. Soc. Mass Spectrom. 1991, 2, 270.CrossRefGoogle Scholar
  19. 19.
    Chen, H.; Zheng, X.; Yang, P.; Cooks, R. G. Reduction of Nitroaromatics into Arylnitrenium Ions by Vinyl Halide Cation. Chem. Commun. 2004, 688.Google Scholar
  20. 20.
    Chen, H.; Zheng, X.; Cooks, R. G. Ketalization of Phosphonium Ions by 1,4-Dioxane: Selective Detection of the Chemical Warfare Agent Simulant DMMP in Mixtures Using Ion/Molecule Reactions. J. Am. Soc. Mass Spectrom. 2003, 3, 181.Google Scholar
  21. 21.
    Petzold, C. J.; Leavell, M. D.; Leary, J. A. Screening and Identification of Acidic Carbohydrates in Bovine Colostrum by Using Ion/Molecule Reactions and Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: Specificity toward Phosphorylated Complexes. Anal. Chem. 2004, 76, 203.CrossRefGoogle Scholar
  22. 22.
    Yinon, J. Mass Spectrometry of Explosives: Nitro Compounds, Nitrate Esters and Nitramines. Mass Spectrom. Rev. 1982, 1, 257.CrossRefGoogle Scholar
  23. 23.
    Matthews, R. G.; Drummond, G. T. Providing One-Carbon Units for Biological Methylations: Mechanistic Studies on Serine Hydroxymethyltransferase, Methylenetetrahydrofolate Reductase, and Methyltetrahydrofolate-Homocysteine Methyltransferase. Chem. Rev. 1990, 90, 1275.CrossRefGoogle Scholar
  24. 24.
    Rozhkov, V.; Kuvshinov, A.; Shevelev, S. Interaction of 2,4,6-Trinitrotoluene and Its Analogues with Aldehydes. Synthesis of Benzoannelated Heterocycles from the Products of Condensation. Synthetic Commun. 2002, 32, 1465.CrossRefGoogle Scholar
  25. 25.
    Meurer, E. C.; Chen, H.; Riter, L. S.; Cotte-Rodriguez, I.; Eberlin, M. N.; Cooks, R. G. Gas-Phase Reactions for Selective Detection of the Explosives TNT and RDX. Chem. Commun. 2004, 40.Google Scholar
  26. 26.
    Yinon, J. Detection of Explosives by Electronic Noses. Anal. Chem. 2003, 75, 99AGoogle Scholar
  27. 27.
    Pinnaduwage, L. A.; Gehl, A.; Hedden, D. L.; Muralidharan, G.; Thundat, T.; Lareau, R. T.; Sulchek, T.; Manning, L.; Rogers, B.; Jones, M.; Adams, J. D. Explosives: A Microsensor for Trinitrotoluene Vapor. Nature. 2003, 425, 474.CrossRefGoogle Scholar
  28. 28.
    Battle, R.; Carlsson, H.; Tollbaeck, P.; Colmsjoe, A.; Crescenzi, C. Enhanced Detection of Nitroaromatic Explosive Vapors Combining Solid-Phase Extraction—Air Sampling, Supercritical Fluid Extraction, and Large-Volume Injection-GC. Anal. Chem. 2003, 75, 3137.CrossRefGoogle Scholar
  29. 29.
    Kovar, K. A. The Meisenheimer Complex—The Basis of Pharmaceutical Color Reactions. Pharm. Unserer Z. 1972 1, 16.CrossRefGoogle Scholar
  30. 30.
    Luzzio, F. A. The Henry reaction: recent examples. Tetrahedron 2001, 57, 915.CrossRefGoogle Scholar
  31. 31.
    Koppel, I. A.; Taft, R. W.; Anvia, F.; Zbu, S.-Z.; Hu, L.-Q.; Sung, K.-S.; DesMarteau, D. D.; Yagupolskii, L. M.; Yagupolskii, Y. L.; Ignat’ev, N. V.; Kondratenko, N. V.; Volkonskii, A. Y.; Vlasov, V. M.; Notario, R.; Maria, P.-C. The Gas-Phase Acidities of Very Strong Neutral Bronsted Acids. J. Am. Chem. Soc. 1994, 116, 3047.CrossRefGoogle Scholar
  32. 32.
    Bartmess, J. E.; Scott, J. A.; McIver, R. T. The Gas Phase Acidity Scale from Methanol to Phenol. J. Am. Chem. Soc. 1979, 101, 6047.Google Scholar
  33. 33.
    Buker, H. H.; Nibbering, N. M. M.; Espinosa, D.; Mongin, F.; Schlosser, M. Additivity of Substituent Effects in the Fluoroarene Series: Equilibrium Acidity in the Gas Phase and Deprotonation Rates in Ethereal Solution. Tetrahed. Lett. 1997, 38, 8519.CrossRefGoogle Scholar
  34. 34.
    Ramond, T. M.; Davico, G. E.; Schwartz, R. L.; Lineberger, W. C. Vibronic Structure of Alkoxy Radicals via Photoelectron Spectroscopy. J. Chem. Phys. 2000, 112, 1158.CrossRefGoogle Scholar
  35. 35.
    Zhao, X.; Yinon, J. Characterization and Origin Identification of 2,4,6-Trinitrotoluene through its By-Product Isomers by Liquid Chromatography-Atmospheric Pressure Chemical Ionization Mass Spectrometry. J. Chromatogr. A. 2002, 946, 125.CrossRefGoogle Scholar
  36. 36.
    Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry, 2nd ed. Part A: Structure and Mechanisms; Plenum Publishing Corporation: New York; 1984 p. 326.CrossRefGoogle Scholar
  37. 37.
    Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S. W.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stevanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 2003 Gaussian, Inc.: Pittsburgh, PA, 2003.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2004

Authors and Affiliations

  1. 1.Department of ChemistryPurdue UniversityWest LafayetteUSA

Personalised recommendations