Isomeric discrimination of arginine-containing dipeptides using electrospray ionization-ion trap mass spectrometry and the kinetic method

  • Kevin A. Schug
  • Wolfgang Lindner
  • Karel Lemr


The Kinetic Method (KM), applied commonly for thermochemical determinations, is used here for sterically-controlled isomeric determination of N-versus C-terminal Arg-containing dipeptide isomers (ArgX versus XArg; where X = His, Leu, Lys, Pro, Ser, Phe, and Tyr). The KM is offered as an alternate approach to direct collision-induced dissociation (CID) procedures. Through formation, isolation, and dissociation of a sterically-encumbered, metal-centered complex with electrospray ionization ion trap mass spectrometry technology, reference dipeptide molecules are screened to quantitatively differentiate a mixture of isomers based on their arrangement about the metal center. Arg-containing dipeptide molecules are chosen because of their contribution in a wide array of protein and peptide functions. Additionally, problems cited previously for evaluation of systems containing Arg residues (due to the incorporation of the guanidinium moiety) by the KM are addressed. The method is shown to be successful for highlighting favorable reference analytes (e.g., ArgPhe, ArgLeu, ProArg, PheArg, among others) for exceptional discrimination (Riso>2.0) of the majority of N- and C-terminal Arg-containing peptides tested.


Dipeptide Proton Affinity Kinetic Method Trimeric Complex Guanidinium Moiety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cooks, R. G.; Wong, P. S. H. Kinetic Method of Making Thermodynamical Determinations: Advances and Applications. Acc. Chem. Res. 1998, 31, 379–386.CrossRefGoogle Scholar
  2. 2.
    Cooks, R. G.; Koskinen, J. T.; Thomas, P. D. The Kinetic Method of Making Thermodynamical Determinations. J. Mass Spectrom. 1999, 34, 85–92.CrossRefGoogle Scholar
  3. 3.
    Cooks, R. G.; Kruger, T. L. Intrinsic Basicity Determination Using Metastable Ions. J. Am. Chem. Soc. 1977, 99, 1279–1281.CrossRefGoogle Scholar
  4. 4.
    Hahn, I. S.; Wesdemiotis, C. Protonation Thermochemistry of β-Alanine. An Evaluation of Proton Affinities and Entropies Determined by the Extended Kinetic Method. Int. J. Mass Spectrom. 2003, 222, 465–479.CrossRefGoogle Scholar
  5. 5.
    Mezzache, S.; Afonso, C.; Pepe, C.; Karoyan, P.; Fournier, F.; Tabet, J.-C. Proton Affinity of Proline and Modified Prolines Using the Kinetic Method: Role of the Conformation Investigated by Ab Initio Calculations. Rapid Commun. Mass Spectrom. 2003, 17, 1626–1632.CrossRefGoogle Scholar
  6. 6.
    Voleti, N.; Vairamani, M. Proton Affinity Differences Among Three N-Acetylhexosamines Studied by the Kinetic Method. Rapid Commun. Mass Spectrom. 2003, 17, 1089–1091.CrossRefGoogle Scholar
  7. 7.
    Williams, T. I.; Denault, J. W.; Cooks, R. G. Proton Affinity of Deuterated Acetonitrile Estimated by the Kinetic Method with Full Entropy Analysis. Int. J. Mass Spectrom. 2001, 210/211, 133–146.CrossRefGoogle Scholar
  8. 8.
    Zheng, X.; Cooks, R. G. Thermochemical Determinations by the Kinetic Method with Direct Entropy Correction. J. Phys. Chem. A 2002, 106, 9939.CrossRefGoogle Scholar
  9. 9.
    Tao, W. A.; Zhang, D.; Nikolaev, E. N.; Cooks, R. G. Copper(II)-Assisted Enantiomeric Analysis of D,L-Amino Acids Using the Kinetic Method: Chiral Recognition and Quantification in the Gas Phase. J. Am. Chem. Soc. 2000, 122, 10598–10609.CrossRefGoogle Scholar
  10. 10.
    Zhang, D.; Tao, W. A.; Cooks, R. G. Chiral Resolution of D- and L-Amino Acids by Tandem Mass Spectrometry of Ni(II)-Bound Trimeric Complexes. Int. J. Mass Spectrom. 2001, 204, 159–169.CrossRefGoogle Scholar
  11. 11.
    Wu, L.; Tao, W. A.; Cooks, R. G. Kinetic Method for the Simultaneous Chiral Analysis of Different Amino Acids in Mixtures. J. Mass Spectrom. 2003, 38, 386–393.CrossRefGoogle Scholar
  12. 12.
    Tao, W. A.; Wu, L.; Cooks, R. G. Differentiation and Quantitation of Isomeric Dipeptides by Low-Energy Dissociation of Copper(II)-Bound Complexes. J. Am. Soc. Mass Spectrom. 2001, 12, 490–496.CrossRefGoogle Scholar
  13. 13.
    Wu, L.; Lemr, K.; Aggerholm, T.; Cooks, R. G. Recognition and Quantification of Binary and Ternary Mixtures of Isomeric Peptides by the Kinetic Method: Metal Ion and Ligand Effects on the Dissociation of Metal-Bound Complexes. J. Am. Soc. Mass Spectrom. 2003, 14, 152–160.CrossRefGoogle Scholar
  14. 14.
    Holmes, J. L.; Aubry, C.; Mayer, P. M. Proton Affinities of Primary Alkanols: An Appraisal of the Kinetic Method. J. Phys. Chem. A 1999, 103, 705–709.CrossRefGoogle Scholar
  15. 15.
    Wu, L.; Cooks, R. G. Chiral Analysis Using the Kinetic Method with Optimized Fixed Ligands: Applications to Some Antibiotics. Anal. Chem. 2003, 75, 678–684.CrossRefGoogle Scholar
  16. 16.
    Cox, K. A.; Gaskell, S. J.; Morris, M.; Whiting, A. Role of the Site of Protonation in the Low-Energy Decomposition of Gas Phase Peptide Ions. J. Am. Soc. Mass Spectrom. 1996, 7, 522–531.CrossRefGoogle Scholar
  17. 17.
    Maksić, Z. B.; Kovačević, B. Towards the Absolute Proton Affinities of 20 α-amino acids. Chem. Phys. Lett. 1999, 307, 497–504.CrossRefGoogle Scholar
  18. 18.
    Cotton, F. A.; Hazen, E. E., Jr. The Enzymes, Vol. IV; Boyer, P. D., Ed.; Academic Press: New York, 1971; Chap. 7.Google Scholar
  19. 19.
    Puspita, W. J.; Odani, A.; Yamauchi, O. Copper(II)-Dipeptide Complexes Containing an Acidic and a Basic Amino Acid Residue. Side Chain Effects on Structure and Stability. J. Inorg. Biochem. 1999, 73, 203–213.CrossRefGoogle Scholar
  20. 20.
    Shields, S. J.; Bluhm, B. K.; Russell, D. H. Fragmentation Chemistry of [M + Cu]+ Peptide Ions Containing an N-Terminal Arginine. J. Am. Soc. Mass Spectrom. 2000, 11, 626–638.CrossRefGoogle Scholar
  21. 21.
    Dikler, S.; Kelly, J. W.; Russell, D. H. Improving Mass Spectrometric Sequencing of Arginine-Containing Peptides by Derivatization with Acetylacetone. J. Mass Spectrom. 1997, 32, 1337–1349.CrossRefGoogle Scholar
  22. 22.
    Figeys, D. Proteomics in 2002: A Year of Technical Development and Wide-Ranging Applications. Anal. Chem. 2003, 75, 2891–2905.CrossRefGoogle Scholar
  23. 23.
    Arima, T.; Kitamura, Y.; Nishiya, T.; Taniguchi, T.; Takagi, H.; Nomura, Y. Effects of Kyotorphin (L-Tyrosyl-L-Arginine) on [3H]NG-Nitro-L-Arginine Binding to Neuronal Nitric Oxide Synthase in Rat Brain. Neurochem. Int. 1997, 30, 605–611.CrossRefGoogle Scholar
  24. 24.
    Cowper, A. E.; Cáceres, J. F.; Mayeda, A.; Screaton, G. R. Serine-Arginine (SR) Protein-Like Factors that Antagonize Authentic SR Proteins and Regulate Alternative Splicing. J. Biol. Chem. 2001, 276, 48908–48914.CrossRefGoogle Scholar
  25. 25.
    Houston, D. R.; Eggleston, I.; Synstad, B.; Eijsink, V. G. H.; van Aalten, D. M. F. The Cyclic Dipeptide Cl-4 (Cyclo-L-Arginyl-D-Proline) Inhibits Family 18 Chitinases by Structural Mimicry of a Reaction Intermediate. Biochem. J. 2002, 368, 23–27.CrossRefGoogle Scholar
  26. 26.
    Su, C.-L.; Austic, R. E. The Utilization of Dipeptides Containing L-Arginine by Chicken Macrophages. Poultry Sci. 1998, 77, 1852–1857.Google Scholar
  27. 27.
    Borth, S.; Hansel, W.; Rosner, P.; Junge, T. Regioisomeric Differentiation of 2,3- and 3,4-Methylenedioxy Ring Substituted Phenylalkylamines by Gas Chromatography/Mass Spectrometry. J. Mass Spectrom. 2000, 35, 705–710.CrossRefGoogle Scholar
  28. 28.
    Vouros, P.; Muller, D. R.; Richter, W. J. Low-Energy Collision-Induced Dissociation of B1-Type Sugar Ions Formed from Peracetylated Methyl Pentosides and Methyl 6-Deoxyhexosides. J. Mass Spectrom. 1999, 34, 346–353.CrossRefGoogle Scholar
  29. 29.
    Sheeley, D. M.; Reinhold, V. N. Structural Characterization of Carbohydrate Sequence, Linkage, and Branching in a Quadrupole Ion Trap Mass Spectrometer: Neutral Oligosaccharides and N-Linked Glycans. Anal. Chem. 1998, 70, 3053–3059.CrossRefGoogle Scholar
  30. 30.
    Squire, N. L.; Beranova, S.; Wesdemiotis, C. J. Tandem Mass Spectrometry of Peptides. III. Differentiation Between Leucine and Isoleucine Based on Neutral Losses. J. Mass Spectrom. 1995, 30, 1429–1434.CrossRefGoogle Scholar
  31. 31.
    Lu, H.-J.; Guo, Y.-L. Evaluation of Chiral Recognition Characteristics of Metal and Proton Complexes of Di-o-Benzoyl-Tartaric Acid Dibutyl Ester and L-Tryptophan in the Gas Phase. J. Am. Soc. Mass Spectrom. 2003, 14, 571–580.CrossRefGoogle Scholar
  32. 32.
    Filippi, A.; Giardini, A.; Piccirillo, S.; Speranza, M. Gas-Phase Enantioselectivity. Int. J. Mass Spectrom. 2000, 198, 137–163.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2004

Authors and Affiliations

  1. 1.Department of Analytical ChemistryUniversity of ViennaViennaAustria
  2. 2.Department of Analytical ChemistryPalacký UniversityOlomoucCzech Republic

Personalised recommendations