Advertisement

Electrospray/mass spectrometric identification and analysis of 4-hydroxy-2-alkylquinolines (HAQs) produced by Pseudomonas aeruginosa

  • François Lépine
  • Sylvain Milot
  • Eric Déziel
  • Jianxin He
  • Laurence G. Rahme
Article

Abstract

The opportunistic pathogen Pseudomonas aeruginosa produces a large array of 4-hydroxy-2-alkylquinolines (HAQs). These compounds were analyzed by LC/MS, using positive electrospray ionization, in the culture supernatant of strain PA14. Fifty-six HAQs and related compounds were detected and their [M+H]+ ions were further analyzed by collision induced dissociation (CID). These HAQs were grouped into five different series based on the presence of an hydrogen or hydroxyl group at the 3 position, an N-oxide group in place of the quinoline nitrogen, and an unsaturation on their alkyl side chain. Two new analogs of 3,4-dihydroxy-2 heptylquinoline, the Pseudomonas quinolone signal (PQS), were found with an alkyl chain longer by one and two methylene groups. Moreover, two additional series of compounds were identified in which a saturated or unsaturated alkyl side chain is located at the 3 position along with an hydroxyl group at the 3 position and a ketone at the 2 position. No HAQ N-oxides, nor any compounds from the latter two series, were detected in a pqsL mutant derivative of PA14, indicating that this gene is involved in the biosynthesis of these compounds. This work demonstrates the large repertoire of HAQ and HAQ-related compounds produced by P. aeruginosa, and provides insight into N-oxides biosynthesis and confirm the hypothesis that N-oxides are the precursors of compounds from Series 6 and 7.

Keywords

Pseudomonas Aeruginosa Alkyl Chain Collision Induce Dissociation Alkyl Side Chain Collision Induce Dissociation Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fick, R. B., Jr. Pseudomonas aeruginosa the Opportunist Pathogenesis and Disease; CRC Press: Boca Raton, FL, 1993; 1–5.Google Scholar
  2. 2.
    Lyczak, J. B.; Cannon, C. L.; Pier, G. B. Lung Infections Associated with Cystic Fibrosis. Clin. Microbiol. Rev. 2002, 15, 194–222.CrossRefGoogle Scholar
  3. 3.
    Budzikiewicz, H. Secondary Metabolites from Fluorescent Pseudomonads. FEMS Microbiol. Rev. 1993, 104, 209–228.CrossRefGoogle Scholar
  4. 4.
    Wells, I. C. Antibiotic Substances Produced by Pseudomonas aeruginosa. Syntheses of Pyo Ib, Pyo Ic, and Pyo III. J. Biol. Chem. 1952, 196, 331–340.Google Scholar
  5. 5.
    Hays, E. E.; Wells, I. C.; Katzman, P. A.; Cain, C. K.; Jacobs, A.; Thayer, S. A.; Doisy, E. A.; Gaby, W. L.; Roberts, E. C.; Muir, R. D.; Carroll, C. J.; Jones, L. R.; Wade, N. J. Antibiotic Substances Produced by. Pseudomonas aeruginosa. J. Biol. Chem. 1945, 159, 725–750.Google Scholar
  6. 6.
    Wratten, S. J.; Wolfe, M. S.; Andersen, R. J.; Faulkner, D. J. Antibiotic Metabolites from a Marine Pseudomonad. Antimicrob. Agents Chemother. 1977, 11, 411–414.Google Scholar
  7. 7.
    Cornforth, J. W.; James, A. T. Structure of a Naturally Occurring Antagonist of Dihydrostreptomycin. Biochem. J. 1956, 63, 124–130.Google Scholar
  8. 8.
    Lightbown, J. W.; Jackson, F. L. Inhibition of Cytochrome Systems of Heart Muscle and Certain Bacteria by the Antagonist of Dihydrostreptomycin: 2-Alkyl-4-Hydroxyquinoline N-Oxide. Biochem. J. 1956, 63, 124–137.Google Scholar
  9. 9.
    Machan, Z. A.; Taylor, G. W.; Pitt, T. L.; Cole, P. J.; Wilson, R. 2-Heptyl-4-Hydroxyquinoline N-Oxide, an Antistaphilococcal Agent Produced by Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 1992, 30, 615–623.CrossRefGoogle Scholar
  10. 10.
    Takeda, R. Isolation of Substance B from the Culture of Pseudomonas aeruginosa T 359. Hakko Koyaku Zasshi 1959, 37(59), 63.Google Scholar
  11. 11.
    Pesci, E. C.; Milbank, J. B. J.; Pearson, J. P.; McKnight, S.; Kende, A. S.; Greenberg, E. P.; Iglewski, B. H. Quinolone Signaling in the Cell-to-Cell Communication System of. Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 11229–11234.CrossRefGoogle Scholar
  12. 12.
    Fuqua, C.; Parsek, M. R.; Greenberg, E. P. Regulation of Gene Expression by Cell-to-Cell Communication: Acyl-homoserine Lactone Quorum Sensing. Annu. Rev. Genet. 2001, 35, 439–468.CrossRefGoogle Scholar
  13. 13.
    Collier, D. N.; Anderson, L.; McKnight, S. L.; Noah, T. L.; Knowles, M.; Boucher, R.; Schwab, U.; Gillian, P.; Pesci, E. C. A Bacterial Cell-to-Cell Signal in the Lungs of Cystic Fibrosis Patients. FEMS Microbiol. Lett. 2002, 215, 41–46.CrossRefGoogle Scholar
  14. 14.
    Calfee, M. W.; Coleman, J. P.; Pesci, E. C. Interference with Pseudomonas quinolone signal synthesis inhibits virulence factor expression by Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 11663–11667.CrossRefGoogle Scholar
  15. 15.
    D’Argenio, D. A.; Calfee, M. W.; Rainey, P. B.; Pesci, E. C. Autolysis and Autoaggregation in Pseudomonas aeruginosa Colony Morphology Mutants. J. Bacteriol. 2002, 184, 6481–6489.CrossRefGoogle Scholar
  16. 16.
    Taylor, G. W.; Machan, Z. A.; Mehmet, S.; Cole, P. J.; Wilson, R. Rapid Identification of 4-Hydroxy-2-Alkylquinolines Produced by Pseudomonas aeruginosa Using Gas Chromatography-Electron Capture Mass Spectrometry. J. Chromatogr. B. 1995, 664, 458–462.CrossRefGoogle Scholar
  17. 17.
    Lépine, F.; Déziel, E.; Milot, S.; Rahme, L. G. A Stable Isotope Dilution Assay for the Quantification of the Pseudomonas quinolone signal in Pseudomonas aeruginosa. Biochim. Biophys. Acta 2003, 1622, 36–41.Google Scholar
  18. 18.
    Déziel, E.; Lépine, F.; Milot, S.; He, J.; Mindrinos, M. N.; Tomkins, R. G.; Rahme, L. G. Study of Pseudomonas aeruginosa 4-Hydroxy-2-Alkylquinolines Reveals a Role for 4-Hydroxy-2-Heptylquinoline in Cell-to-Cell Communication. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 1339–1344.CrossRefGoogle Scholar
  19. 19.
    Rahme, L. G.; Stevens, E. J.; Wolfort, S. F.; Shao, J.; Tompkins, R. G.; Ausubel, F. M. Common Virulence Factors for Bacterial Pathogenicity in Plants and Animals. Science 1995, 268, 1899–1902.CrossRefGoogle Scholar
  20. 20.
    Hoang, T. T.; Karkhoff-Schweizer, R. R.; Kutchma, A. J.; Schweizer, H. P. A Broad-Host-Range Flp-FRT Recombination System for Site-Specific Excision of Chromosomally-Located DNA Sequences: Application for Isolation of Unmarked Pseudomonas aeruginosa mutants. Gene 1998, 212, 77–86.CrossRefGoogle Scholar
  21. 21.
    Budzikiewicz, H.; Besler, U. Massenspektroskopische Fragmentierungsreaktionen. XI β-Spaltung von 2-Alkylpyridinen-Umlagerung zu einer Azachinodimethanstruktur? (in German). Org. Mass Spectrom. 1976, 11(398), 405.Google Scholar
  22. 22.
    Reisch, J.; Pagnucco, R.; Jantos, N. Mass Spectrometric Studies of Quinoline Alkaloids-I. Some 2-Alkyl(aryl)-4-Quinolones. Phytochemistry 1968, 7, 997–1003.CrossRefGoogle Scholar
  23. 23.
    March, R. E., unpublished personnal communicationGoogle Scholar
  24. 24.
    Miao, X. S.; March, R. E.; Metcalfe, C. D. A Tandem Mass Spectrometric Study of the N-Oxides, Quinoline N-Oxides, Carbadox, and Olaquindox, Carried Out at High Mass Accuracy Using Electrospray Ionization. Int. J. Mass Spectrom. 2003, 230, 123–133.CrossRefGoogle Scholar
  25. 25.
    Budzikiewicz, H.; Schaller, U.; Korth, H.; Pulverer, G. Bakterieninhaltsstoffe, V. Alkylchinoline und deren N-Oxide aus Pseudomonas aeruginosa. Monats. Chem. 1979, 110(947), 953.Google Scholar
  26. 26.
    Neuenhaus, W.; Budzikiewicz, H.; Kort, H.; Pulvere, G. Bacterienninhaltssoffe, III 3-Alkyl-Tetrahydrochinolinderivative aus Pseudomonas. Z. Naturforsch. 1979, 34b(313), 315.Google Scholar
  27. 27.
    Ritter, C.; Luckner, M. Zur Biosynthese der 2-N-Alkyl-4-Hydroxychinolinderivative (Pseudane) bei Pseudomonas aeruginosa. Eur. J. Biochem. 1971, 18, 391–400.CrossRefGoogle Scholar
  28. 28.
    Debitus, C.; Guella, G.; Mancini, I.; Waikedre, J.; Guemas, J. P.; Nicolas, J. L.; Pietra, F. Quinolones from a Bacterium and Tyrosine from its Host Sponge Subera creba from the Coral Sea. J. Marine Biotechnol. 1998, 6, 136–141.Google Scholar
  29. 29.
    Gallagher, L. A.; McNight, S. L.; Kuznetsova, M. S.; Pesci, E. C.; Manoil, C. Functions Required for Extracellular Quinolone Signaling by Pseudomonas aeruginosa. J. Bact. 2002, 184, 6472–6480.CrossRefGoogle Scholar
  30. 30.
    Déziel, E., Gopalan, S., Lépine, F., Remick, A. N., Tampakaki, A. P., Mindrinos, M. N., Rahme, L. G. MvfR, a Virulence-Related Transcriptional Regulator of Pseudomonas aeruginosa Modulates the Expression of Multiple Quorum Sensing-Regulated Genes, but not lasRI and rhlR. Mol. Microbiol., in pressGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2004

Authors and Affiliations

  • François Lépine
    • 1
  • Sylvain Milot
    • 1
  • Eric Déziel
    • 2
  • Jianxin He
    • 2
  • Laurence G. Rahme
    • 2
  1. 1.INRS-Institut Armand-FrappierUniversité du QuébecLavalCanada
  2. 2.Department of Surgery, Harvard Medical School and Shriner’s Burns InstituteMassachusetts General HospitalBostonUSA

Personalised recommendations