Advertisement

Optimized sample-processing time and peptide recovery for the mass spectrometric analysis of protein digests

  • Doris E. Terry
  • Edward Umstot
  • Dominic M. Desiderio
Article

Abstract

Proteomics requires an optimized level of sample-processing, including a minimal sample-processing time and an optimal peptide recovery from protein digests, in order to maximize the percentage sequence coverage and to improve the accuracy of protein identification. The conventional methods of protein characterization from one-dimensional or two-dimensional gels include the destaining of an excised gel piece, followed by an overnight in-gel enzyme digestion. The aims of this study were to determine whether: (1) stained gels can be used without any destaining for trypsin digestion and mass spectrometry (MS); (2) tryptic peptides can be recovered from a matrix-assisted laser desorption/ionization (MALDI) target plate for a subsequent analysis with liquid chromatography (LC) coupled to an electrospray ionization (ESI) quadrupole ion trap MS; and (3) an overnight in-gel digestion is necessary for protein characterization with MS. These three strategies would significantly improve sample throughput. Cerebrospinal fluid (CSF) was the model biological fluid used to develop these methods. CSF was desalted by gel filtration, and CSF proteins were separated by two-dimensional gel electrophoresis (2DGE). Proteins were visualized with either silver, Coomassie, or Stains-All (counterstained with silver). None of the gels was destained. Protein spots were in-gel trypsin digested, the tryptic peptides were purified with ZipTip, and the peptides were analyzed with MALDI and ESI MS. Some of the samples that were spotted onto a wax-coated MALDI target plate were recovered and analyzed with ESI MS. All three types of stained gels were compatible with MALDI and ESI MS without any destaining. In-gel trypsin digestion can be performed in only 10–60 min for protein characterization with MS, the sample can be recovered from the MALDI target plate for use in ESI MS, and there was a 90% reduction in sample-processing time from overnight to ca. 3 h.

Keywords

Protein Spot Tryptic Peptide Transthyretin MALDI Spectrum MALDI Target Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Gharahdaghi, F.; Weinberg, C. R.; Meagher, D. A.; Imai, B. S.; Mische, S. M. Mass Spectrometric Identification of Proteins from Silver-Stained Polyacrylamide Gel: A Method for the Removal of Silver Ions to Enhance Sensitivity. Electrophoresis 1999, 20, 601–605.CrossRefGoogle Scholar
  2. 2.
    Raymackers, J.; Daniels, A.; De Brabandere, V.; Missiaen, C.; Dauwe, M.; Verhaert, P.; Vanmechelen, E.; Meheus, L. Identification of Two-Dimensionally Separated Human Cerebrospinal Fluid Proteins by N-Terminal Sequencing, Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry, Nanoliquid Chromatography-Electrospray Ionization-Time-of-Flight Mass Spectrometry, and Tandem Mass Spectrometry. Electrophoresis 2000, 21, 2266–2283.CrossRefGoogle Scholar
  3. 3.
    Lauber, W. M.; Carroll, J. A.; Dufield, D. R.; Kiesel, J. R.; Radabaugh, M. R.; Malone, J. P. Mass Spectrometry Compatibility of Two-Dimensional Gel Protein Stains. Electrophoresis 2001, 22, 906–918.CrossRefGoogle Scholar
  4. 4.
    Yuan, X.; Desiderio, D. M. Protein Identification with Teflon as Matrix-Assisted Laser Desorption/Ionization Sample Support. J. Mass Spectrom. 2002, 37, 512–524.CrossRefGoogle Scholar
  5. 5.
    Sickmann, A.; Dormeyer, W.; Wortelkamp, S.; Woitalla, D.; Kuhn, W.; Meyer, H. E. Identification of Proteins from Human Cerebrospinal Fluid, Separated by Two-Dimensional Polyacrylamide Gel Electrophoresis. Electrophoresis 2000, 21, 2721–2728.CrossRefGoogle Scholar
  6. 6.
    Isfort, R. J.; Wang, F.; Greis, K. D.; Sun, Y.; Keough, T. W.; Farrar, R. P.; Bodine, S. C.; Anderson, N. L. Proteomic Analysis of Rat Soleus Muscle Undergoing Hindlimb Suspension-Induced Atrophy and Reweighting Hypertrophy. Proteomics 2002, 2, 543–550.CrossRefGoogle Scholar
  7. 7.
    Pluskal, M. G.; Bogdanova, A.; Lopez, M.; Gutierrez, S.; Pitt, A. M. Multiwell In-Gel Protein Digestion and Microscale Sample Preparation for Protein Identification by Mass Spectrometry. Proteomics 2002, 2, 145–150.CrossRefGoogle Scholar
  8. 8.
    Mineki, R.; Taka, H.; Fujimura, T.; Kikkawa, M.; Shindo, N.; Murayama, K. In Situ Alkylation with Acrylamide for Identification of Cysteinyl Residues in Proteins During One- and Two-Dimensional Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis. Proteomics 2002, 2, 1672–1681.CrossRefGoogle Scholar
  9. 9.
    Tie, J. K.; Mutucumarana, V. P.; Straight, D. L.; Carrick, K. L.; Pope, R. M.; Stafford, D. W. Determination of Disulfide Bond Assignment of Human Vitamin K-Dependent {γ}-Glutamyl Carboxylase by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. J. Biol. Chem. 2003, 278, 45468–45475.CrossRefGoogle Scholar
  10. 10.
    Keough, T.; Lacey, M. P.; Fieno, A. M.; Grant, R. A.; Sun, Y.; Bauer, M. D.; Begley, K. B. Tandem Mass Spectrometry Methods for Definitive Protein Identification in Proteomics Research. Electrophoresis 2000, 21, 2252–2265.CrossRefGoogle Scholar
  11. 11.
    Pang, L.; Fryksdale, B. G.; Chow, N.; Wong, D. L.; Gaertner, A. L.; Miller, B. S. Impact of Prefractionation Uusing Gradiflow Trade Mark on Two-Dimensional Gel Electrophoresis and Protein Identification by Matrix Assisted Laser Desorption/Ionization Time-of-Flight-Mass Spectrometry. Electrophoresis 2003, 24, 3484–3492.CrossRefGoogle Scholar
  12. 12.
    Davidsson, P.; Folkesson, S.; Christiansson, M.; Lindbjer, M.; Dellheden, B.; Blennow, K.; Westman-Brinkmalm, A. Identification of Proteins in Human Cerebrospinal Fluid Using Liquid-Phase Isoelectric Focusing as a Prefractionation Step Followed by Two-Dimensional Gel Electrophoresis and Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2002, 16, 2083–2088.CrossRefGoogle Scholar
  13. 13.
    Sickmann, A.; Dormeyer, W.; Wortelkamp, S.; Woitalla, D.; Kuhn, W.; Meyer, H. E. Towards a High Resolution Separation of Human Cerebrospinal Fluid. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2002, 71, 167–196.Google Scholar
  14. 14.
    Lopez, M. F.; Berggren, K.; Chernokalskaya, E.; Lazarev, A.; Robinson, M.; Patton, W. F. A Comparison of Silver Stain and SYPRO Ruby Protein Gel Stain with Respect to Protein Detection in Two-Dimensional Gels and Identification by Peptide Mass Profiling. Electrophoresis 2000, 21, 3673–3683.CrossRefGoogle Scholar
  15. 15.
    Parker, K. C.; Garrels, J. I.; Hines, W.; Butler, E. M.; McKee, A. H.; Patterson, D.; Martin, S. Identification of Yeast Proteins from Two-Dimensional Gels: Working Out Spot Cross-Contamination. Electrophoresis 1998, 19, 1920–1932.CrossRefGoogle Scholar
  16. 16.
    Wilm, M.; Mann, M. Analytical Properties of the Nanoelectrospray Ion Source. Anal. Chem. 1996, 68, 1–8.CrossRefGoogle Scholar
  17. 17.
    Hung, K. C.; Ding, H.; Guo, B. Use of Poly(Tetrafluoroethylene)s as a Sample Support for the MALDI-TOF Analysis of DNA and Proteins. Anal. Chem. 1999, 71, 518–521.CrossRefGoogle Scholar
  18. 18.
    Schuerenberg, M.; Luebbert, C.; Eickhoff, H.; Kalkum, M.; Lehrach, H.; Nordhoff, E. Prestructured MALDI-MS Sample Supports. Anal. Chem. 2000, 72, 3436–3442.CrossRefGoogle Scholar
  19. 19.
    Botting, C. H. Improved Detection of Higher Molecular Weight Proteins by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry on Polytetrafluoroethylene Surfaces. Rapid Commun. Mass Spectrom. 2003, 17, 598–602.CrossRefGoogle Scholar
  20. 20.
    McComb, M. E.; Oleschuk, R. D.; Chow, A.; Ens, W.; Standing, K. G.; Perreault, H.; Smith, M. Characterization of Hemoglobin Variants by MALDI-TOF MS Using a Polyurethane Membrane as the Sample Support. Anal. Chem. 1998, 70, 5142–5149.CrossRefGoogle Scholar
  21. 21.
    Hung, K. C.; Rashidzadeh, H.; Wang, Y.; Guo, B. Use of Paraffin Wax Film in MALDI-TOF Analysis of DNA. Anal. Chem. 1998, 70, 3088–3093.CrossRefGoogle Scholar
  22. 22.
    Worrall, T. A.; Cotter, R. J.; Woods, A. S. Purification of Contaminated Peptides and Proteins on Synthetic Membrane Surfaces for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal. Chem. 1998, 70, 750–756.CrossRefGoogle Scholar
  23. 23.
    Bradford, M. M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254.CrossRefGoogle Scholar
  24. 24.
    Pharmacia Biotech Silver Staining Kit Protein Instruction; 71-7177-00 Edition AEGoogle Scholar
  25. 25.
    Goldberg, H. A.; Warner, K. J. The Staining of Acidic Proteins on Polyacrylamide Gels: Enhanced Sensitivity and Stability of “Stains-All” Staining in Combination with Silver Nitrate. Anal. Biochem. 1997, 251, 227–233.CrossRefGoogle Scholar
  26. 26.
    Erdjument-Bromage, H.; Lui, M.; Lacomis, L.; Grewal, A.; Annan, R. S.; McNulty, D. E.; Carr, S. A.; Tempst, P. Examination of Micro-Tip Reversed-Phase Liquid Chromatographic Extraction of Peptide Pools for Mass Spectrometric Analysis. J. Chromatogr. A 1998, 826, 167–181.CrossRefGoogle Scholar
  27. 27.
    Keough, T.; Lacey, M. P.; Youngquist, R. S. Solid-Phase Derivatization of Tryptic Peptides for Rapid Protein Identification by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Rapid Commun. Mass. Spectrom. 2002, 16, 1003–1015.CrossRefGoogle Scholar
  28. 28.
    Schultz, R. M.; Liebman, M. N. Proteins: Composition and Structure In Textbook of Biochemistry with Clinical Correlations, 3rd ed.; Devlin, T. M., Ed.; Wiley-Liss, Inc.: New York, 1992; Chap II, 25–90.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2004

Authors and Affiliations

  • Doris E. Terry
    • 1
  • Edward Umstot
    • 1
  • Dominic M. Desiderio
    • 1
    • 2
    • 3
  1. 1.The Charles B. Stout Neuroscience Mass Spectrometry LaboratoryThe University of Tennessee Center for Health Science MemphisUSA
  2. 2.Department of NeurologyThe University of Tennessee Center for Health ScienceMemphisUSA
  3. 3.Department of Molecular SciencesThe University of Tennessee Center for Health ScienceMemphisUSA

Personalised recommendations