Advertisement

Measure of carbon and nitrogen stable isotope ratios in cultured cells

  • R. Peteranderl
  • C. LecheneEmail author
Articles

Abstract

We report the measurement of the natural isotope ratios of nitrogen and carbon in subcellular volumes of individual cells among a population of cultured cells using a multi-isotope imaging mass spectrometer (MIMS), [MIMS is the prototype of the NanoSIMS 50, Cameca, France.] We also measured the nitrogen and carbon isotope ratio in cells after they had been cultured in media enriched with the amino acid glycine labeled with either 13C or 15N. The results demonstrate that 13C/12C and 15N/14N isotope ratios can be measured directly on a subcellular scale. This opens the way for the use of stable isotopes, in particular 15N, as labels to measure the intracellular turnover of biomolecules. Such a capability should help resolve a wide range of biomedical problems.

Keywords

Isotope Ratio Carbon Isotope Ratio Boron Neutron Capture Therapy Objective Column Subcellular Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Schoenheimer, R.; Rittenberg, D. Studies in Protein Metabolism. I. General Considerations in the Application of Isotopes to the Study of Protein Metabolism. The Normal Abundance of Nitrogen in Amino Acids. J. Biol. Chem. 1939, 127, 285–290.Google Scholar
  2. 2.
    Schoenheimer, R. The Dynamic State of Body Constituents. The Edward K. Dunham Lectures for the Promotion of the Medical Sciences 1941; Harvard University Press: Cambridge, MA, 1942, pp 1–65.Google Scholar
  3. 3.
    Hindie, E.; Hallegot, P.; Chabala, J. M.; Thorne, N. A.; Coulomb, B.; Levi-Setti, R.; Galle, P. Ion microscopy: A New Approach for Subcellular Localization of Labeled Molecules. Scan. Microsc. 1988, 2(sn4), 1821–1829.Google Scholar
  4. 4.
    Burns, M. S. Biological Microanalysis by Secondary Ion Mass Spectrometry: Status and Prospects. Ultramicroscopy 1988, 24(2/3), 269–281.CrossRefGoogle Scholar
  5. 5.
    Hindie, E.; Coulomb, B.; Beaupain, R.; Galle, P. Mapping the Cellular Distribution of Labeled Molecules by SIMS Microscopy. Biol. Cell 1992, 74(1), 81–88.CrossRefGoogle Scholar
  6. 6.
    Hindie, E.; Coulomb, B.; Galle, P. SIMS Microscopy: A Tool to Measure the Intracellular Concentration of Carbon14-Labeled Molecules. Biol. Cell 1992, 74, 89–92.CrossRefGoogle Scholar
  7. 7.
    Clerc, J.; Fourre, C.; Fragu, P. SIMS Microscopy: Methodology, Problems, and Perspectives in Mapping Drugs and Nuclear Medicine Compounds. Cell. Biol. Int. 1997, 21(10), 619–633.CrossRefGoogle Scholar
  8. 8.
    Colliver, T. L.; Brummel, C. L.; Pacholski, M. L.; Swanek, F. D.; Ewing, A. G.; Winograd, N. Atomic and Molecular Imaging at the Single-Cell Level with TOF-SIMS. Anal. Chem. 1997, 69, 2225–2231.CrossRefGoogle Scholar
  9. 9.
    Pacholski, M. L.; Cannon, D. M. Jr.; Ewing, A. G.; Winograd, N. Static Time-of-Flight Secondary Ion Mass Spectrometry Imaging of Freeze-Fractured, Frozen-Hydrated Biological Membranes. Rapid Commun. Mass Spectrom. 1998, 12, 1232–1235.CrossRefGoogle Scholar
  10. 10.
    Gillen, G.; Roberson, S.; Ng, C.; Stranick, M. Elemental and Molecular Imaging of Human Hair Using Secondary Ion Mass Spectrometry. Scanning 1999, 21(3), 173–181.CrossRefGoogle Scholar
  11. 11.
    McCandlish, C. A.; McMahon, J. M.; Todd, P. J. Secondary Ion Images of the Rodent Brain. J. Am. Soc. Mass Spectrom. 2000, 11(3), 191–199.CrossRefGoogle Scholar
  12. 12.
    Chandra, S.; Smith, D. R.; Morrison, G. H. Subcellular Imaging by Dynamic SIMS Ion Microscopy. Anal. Chem. 2000, 72(3), 104A-114A.CrossRefGoogle Scholar
  13. 13.
    Lorey, D. R. I. I.; Morrison, G. H.; Chandra, S. Dynamic Secondary Ion Mass Spectrometry Analysis of Boron from Boron Neutron Capture Therapy Drugs in Cocultures: Single-Cell Imaging of Two Different Cell Types Within the Same Ion Microscopy Mield of Imaging. Anal. Chem. 2001, 73, 3947–3953.CrossRefGoogle Scholar
  14. 14.
    Todd, P. J.; Schaaff, T. G.; Chaurand, P.; Caprioli, R. M. Organic Ion Imaging of Biological Tissue with Secondary Ion Mass Spectrometry and Matrix-Assisted Laser Desorption/Ionization. J. Mass Spectrom. 2001, 36, 355–369.CrossRefGoogle Scholar
  15. 15.
    Hindie, E.; Blaise, G.; Galle, P. Origin of the Cyanide Secondary Ions Emitted from Biological Tissue Under Ten keV Cesium (1+) Bombardment. In Proceedings of the Secondary Ion Mass Spectrometry SIMS XII International Conference; Benninghoven, A, Ed.; Wiley: Chichester, UK, 1990, pp 335–338.Google Scholar
  16. 16.
    Lousier, F.; Lefebvre, D.; Gibouin, D.; Demarty, M.; Thellier, M.; Ripoll, C. Secondary Ion Mass Spectrometry Imaging of the Fixation of 15N-labeled NO in Pollen Grains. J. Microsc. 2000, 182(Pt.2), 108–115.CrossRefGoogle Scholar
  17. 17.
    Cliff, J. B.; Gaspar, D. J.; Bottomley, P. J.; Myrold, D. D. Exploration of Inorganic C and N Assimilation by Soil Microbes with Time-of-Flight Secondary Ion Mass Spectrometry. Appl. Environ. Microbiol. 2002, 68(8), 4067–4073.CrossRefGoogle Scholar
  18. 18.
    Slodzian, G.; Daigne, B.; Girard, F.; Boust, F.; Hillion, F. Scanning Secondary Ion analytical Microscopy with Parallel Detection. Biol. Cell 1992, 74(1), 43–50.CrossRefGoogle Scholar
  19. 19.
    Lechene, C. Electron Probe Analysis of Small Populations of Single Cells. In Membrane Biophysics II: Physical Methods in the Study of Epithelia; Dinno, M. A.; Callahan, A. B.; Rozzell, T. C., Eds.; Alan R. Liss: New York, 1983; pp 105–132.Google Scholar
  20. 20.
    Lechene, C. Electron Probe Analysis of Cultured Cells. In Recent Advances in Electron and Light Optical Imaging in Biology and Medicine; Somlyo, A. P., Ed.; Annals of New York Academy of Sciences: New York, 1986; pp 270–283.Google Scholar
  21. 21.
    Lechene, C.; Harris, R. C. Electron Probe Analysis of Cultured Renal Cells. In Contemporary Issues in Nephrology: Modern Techniques of Ion Transport; Brenner, B. M.; Stein, J. H., Eds.; Churchill Livingstone: New York, 1987; 173–198.Google Scholar
  22. 22.
    Karnovsky, M. J. A Formaldehyde-Glutaraldehyde Fixative of High Osmolality. J. Cell. Biol. 1965, 27(2), A137-A138.Google Scholar
  23. 23.
    Kiernan, J. A. Histological and Histochemical Methods: Theory and Practice; 3rd ed; Butterworth-Heinemann: Oxford, 1999, p 30.Google Scholar
  24. 24.
    Abraham, E. H.; Brewslow, J. L.; Epstein, J.; Chang-Sing, P.; Lechene, C. Preparation of Individual Human Diploid Fibroblasts and Study of Ion Transport. Am. J. Physiol. (Cell Physiol.) 1985, 17, C154-C164.Google Scholar
  25. 25.
    Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Molecular Biology of the Cell; 4th ed; Garland Science: London, 2002, p 66.Google Scholar
  26. 26.
    Voet, D.; Voet, J. G. Biochemistry; 2nd ed; John Wiley and Sons, Inc: New York, 1995, p 20.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2004

Authors and Affiliations

  1. 1.Department of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonUSA

Personalised recommendations