Advertisement

Differential expression of histone post-translational modifications in acute myeloid and chronic lymphocytic leukemia determined by high-pressure liquid chromatography and mass spectrometry

  • Liwen Zhang
  • Michael A. Freitas
  • Joseph Wickham
  • Mark R. Parthun
  • Marko I. Klisovic
  • Guido Marcucci
  • John C. Byrd
Articles

Abstract

The post-translational modification of the core histones is critical to the regulation of chromatin structure. Traditional methods for the determination of histone modification utilize immunoassay techniques to determine the extent and site of post-translational modification. These methods, though sensitive, require site-specific antibodies. This manuscript describes the application of reverse-phase high-pressure liquid chromatography and mass spectrometry (LC-MS) to analyze global modification levels of core histones. The method is fast, sensitive, and easily automated. Furthermore, the technique gives the global patterns of modification for all four core histones in a single experiment. The LC-MS method was optimized using histones extracted from bovine thymus. These methods were then applied to the characterization of changes in histone modification in acute myeloid leukemia (AML) cell lines treated with histone deacetylase (HDAC) inhibitors. Dose-dependent changes in the distribution of modified core histones were observed. These results were validated in primary leukemia cells from patients with refractory or relapsed AML or chronic lymphocytic leukemia (CLL) treated on a Phase I clinical trial of the HDAC inhibitor depsipeptide. An increase in the relative abundance of specific acetylated forms of histone H4 was readily observable in these patients at intervals of 4 and 24 h after treatment.

Keywords

Acute Myeloid Leukemia Chronic Lymphocytic Leukemia Valproic Acid Histone Modification Histone Acetylation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Annunziato, A. T.; Hansen, J. C. Role of Histone Acetylation in the Assembly and Modulation of Chromatin Structures. Gene Exp 2000, 9, 37–61.Google Scholar
  2. 2.
    Johnson, C. A.; Turner, B. M. Histone Deacetylases: Complex Transducers of Nuclear Signals. Semin. Cell Dev. Biol. 1999, 10, 179–188.CrossRefGoogle Scholar
  3. 3.
    Berger, S. L. Histone Modifications in Transcriptional Regulation. Curr. Opin. Genet. Dev. 2002, 12, 142–148.CrossRefGoogle Scholar
  4. 4.
    Howe, L.; Brown, C. E.; Lechner, T.; Workman, J. L. Histone Acetyltransferase Complexes and Their Link to Transcription. Crit. Rev. Eukaryot. Gene Exp. 1999, 9, 231–243.Google Scholar
  5. 5.
    Stallcup, M. R. Role of Protein Methylation in Chromatin Remodeling and Transcriptional Regulation. Oncogene 2001, 20, 3014–3020.CrossRefGoogle Scholar
  6. 6.
    van Leeuwen, F.; Gafken, P. R.; Gottschling, D. E. Dot1p Modulates Silencing in Yeast by Methylation of the Nucleosome Core. Cell 2002, 109, 745–756.CrossRefGoogle Scholar
  7. 7.
    Ng, H. H.; Feng, Q.; Wang, H.; Erdjument-Bromage, H.; Tempst, P.; Zhang, Y.; Struhl, K. Lysine Methylation Within the Globular Domain of Histone H3 by Dot1 is Important for Telomeric Silencing and Sir Protein Association. Genes Dev 2002, 16, 1518–1527.CrossRefGoogle Scholar
  8. 8.
    Briggs, S. D.; Xiao, T.; Sun, Z.-W.; Caldwell, J. A.; Shabanowitz, J.; Hunt, D. F.; Allis, C. D.; Strahl, B. D. Gene Silencing: Trans-Histone Regulatory Pathway in Chromatin. Nature (London) 2002, 418, 498.CrossRefGoogle Scholar
  9. 9.
    Crane-Robinson, C.; Hebbes, T. R.; Clayton, A. L.; Thorne, A. W. Chromosomal Mapping of Core Histone Acetylation by Immunoselection. Methods 1997, 12, 48–56.CrossRefGoogle Scholar
  10. 10.
    Suka, N.; Suka, Y.; Carmen, A. A.; Wu, J.; Grunstein, M. Highly Specific Antibodies Determine Histone Acetylation Site Usage in Yeast Heterochromatin and Euchromatin. Mol. Cell 2001, 8, 473–479.CrossRefGoogle Scholar
  11. 11.
    Lo, W.-S.; Trievel, R. C.; Rojas, J. R.; Duggan, L.; Hsu, J.-Y.; Allis, C. D.; Marmorstein, R.; Berger, S. L. Phosphorylation of Serine 10 in Histone H3 is Functionally Linked in Vitro and in Vivo to Gcn5-Mediated Acetylation at Lysine 14. Mol. Cell 2000, 5, 917–926.CrossRefGoogle Scholar
  12. 12.
    Edmondson, D. G.; Davie, J. K.; Zhou, J.; Mirnikjoo, B.; Tatchell, K.; Dent, S. Y. R. Site-Specific Loss of Acetylation Upon Phosphorylation of Histone H3. J. Biol. Chem. 2002, 277, 29496–29502.CrossRefGoogle Scholar
  13. 13.
    Ho, Y.-P.; Hsu, P.-H. Investigating the Effects of Protein Patterns on Microorganism Identification by High-Performance Liquid Chromatography-Mass Spectrometry and Protein Database Searches. J. Chromatogr. A 2002, 976, 103–111.CrossRefGoogle Scholar
  14. 14.
    Bischoff, R. Characterization of Proteins, Peptides, and Polynucleotides by Mass Spectrometry In HPLC of Biological Macromolecules 2nd ed; Gooding, K. M.; Regnier, F., Eds.; Marcel Dekker, Inc.: New York, 2002; Vol. LXXXVII, pp 689–738.Google Scholar
  15. 15.
    Ostrowski, L. E.; Blackburn, K.; Radde, K. M.; Moyer, M. B.; Schlatzer, D. M.; Moseley, A.; Boucher, R. C. A Proteomic Analysis of Human Cilia: Identification of Novel Components. Mol. Cell. Proteom. 2002, 1, 451–465.CrossRefGoogle Scholar
  16. 16.
    Sures, I.; Gallwitz, D. Histone-Specific Acetyltransferases from Calf Thymus. Isolation, Properties, and Substrate Specificity of Three Different Enzymes. Biochemistry 1980, 19, 943–951.CrossRefGoogle Scholar
  17. 17.
    Cheson, B. D.; Bennett, J. M.; Grever, M.; Kay, N.; Keating, M. J.; Obrien, S.; Rai, K. R. National Cancer Institute-Sponsored Working Group Guidelines for Chronic Lymphocytic Leukemia: Revised Guidelines for Diagnosis and Treatment. Blood 1996, 87, 4990–4997.Google Scholar
  18. 18.
    Weitkamp, J. H.; Crowe, J. E. Blood Donor Leukocyte Reduction Filters as a Source of Human B Lymphocytes. Biotechniques 2001, 31, 464.Google Scholar
  19. 19.
    Aron, J. L.; Parthun, M. R.; Marcucci, G.; Kitada, S.; Mone, A. P.; Davis, M. E.; Shen, T.; Murphy, T.; Wickham, J.; Kanakry, C.; Lucas, D. M.; Reed, J. C.; Grever, M. R.; Byrd, J. C. Depsipeptide (FR901228) Induces Histone Acetylation and Inhibition of Histone Deacetylase in Chronic Lymphocytic Leukemia Cells Concurrent with Activation of Caspase-8-Mediated Apoptosis and Downregulation of c-FLIP Protein. Blood 2003, 102, 652–658.CrossRefGoogle Scholar
  20. 20.
    Galasinski, S. C.; Louie, D. F.; Gloor, K. K.; Resing, K. A.; Ahn, N. G. Global Regulation of Post-Translational Modifications on Core Histones. J. Biol. Chem. 2002, 277, 2579–2588.CrossRefGoogle Scholar
  21. 21.
    Marks, P. A.; Richon, V. M.; Rifkind, R. A. Histone Deacetylase Inhibitors: Inducers of Differentiation or Apoptosis of Transformed Cells. J. Natl. Cancer Inst. 2000, 92, 1210–1216.CrossRefGoogle Scholar
  22. 22.
    Marks, P. A.; Rifkind, R. A.; Richon, V. M.; Breslow, R. Inhibitors of Histone Deacetylase are Potentially Effective Anticancer Agents. Clin. Cancer Res. 2001, 7, 759–760.Google Scholar
  23. 23.
    Marks, P.; Rifkind, R. A.; Richon, V. M.; Breslow, R.; Miller, T.; Kelly, W. K. Histone Deacetylases and Cancer: Causes and Therapies. Nat. Rev. Cancer 2001, 1, 194–202.CrossRefGoogle Scholar
  24. 24.
    Marks, P. A.; Richon, V. M.; Breslow, R.; Rifkind, R. A. Histone Deacetylase Inhibitors as New Cancer Drugs. Curr. Opin. Oncol. 2001, 13, 477–483.CrossRefGoogle Scholar
  25. 25.
    Melnick, A.; Licht, J. D. Histone Deacetylases as Therapeutic Targets in Hematologic Malignancies. Curr. Opin. Hematol. 2002, 9, 322–332.CrossRefGoogle Scholar
  26. 26.
    Johnstone, R. W. Histone-Deacetylase Inhibitors: Novel Drugs for the Treatment of Cancer. Nat. Rev. Drug Discov. 2002, 1, 287–299.CrossRefGoogle Scholar
  27. 27.
    Jung, M. Inhibitors of Histone Deacetylase as New Anticancer Agents. Curr. Med. Chem. 2001, 8, 1505–1511.Google Scholar
  28. 28.
    Grozinger, C. M.; Schreiber, S. L. Deacetylase Enzymes: Biological Functions and the Use of Small-Molecule Inhibitors. Chem. Biol. 2002, 9, 3–16.CrossRefGoogle Scholar
  29. 29.
    Asou, H.; Tashiro, S.; Hamamoto, K.; Otsuji, A.; Kita, K.; Kamada, N. Establishment of a Human Acute Myeloid Leukemia Cell Line (Kasumi-1) with 8;21 Chromosome Translocation. Blood 1991, 77, 2031–2036.Google Scholar
  30. 30.
    Klisovic, M.; Maghraby, E. A.; Murphy, T.; Sklenar, A. R.; Parthun, M. R.; Aron, J.; Guimon, M.; Sklenar, A.; Archer, K.; Whitman, S.; Rush, L.; Plass, C.; Grever, M. G.; Byrd, J. C.; Marcucci, G. Depsipeptide (FR901228) Promotes Histone Acetylation, Gene Transcription, Apoptosis, and Synergizes with DNA Methyltransferase Inhibitors in AML1-ETO-Positive Leukemic Cells: A Potential Therapeutic Strategy for Histone Deacetylase-Driven Leukemogenesis. Leukemia 2003, 17, 350–358.CrossRefGoogle Scholar
  31. 31.
    Meyers, S.; Downing, J. R.; Hiebert, S. W. Identification of AML-1 and the (8;21) Translocation Protein (AML-1/ETO) as Sequence-Specific DNA-Binding Proteins: The Runt Homology Domain is Required for DNA Binding and Protein–Protein Interactions. Mol. Cell. Biol. 1993, 13, 6336–6345.Google Scholar
  32. 32.
    Lutterbach, B.; Westendorf, J. J.; Linggi, B.; Patten, A.; Moniwa, M.; Davie, J. R.; Huynh, K. D.; Bardwell, V. J.; Lavinsky, R. M.; Rosenfeld, M. G.; Glass, C.; Seto, E.; Hiebert, S. W. ETO, a Target of t(8;21) in Acute Leukemia, Interacts with the N-CoR and mSin3 Corepressors. Mol. Cell. Biol. 1998, 18, 7176–7184.Google Scholar
  33. 33.
    Amann, J. M.; Nip, J.; Strom, D. K.; Lutterbach, B.; Harada, H.; Lenny, N.; Downing, J. R.; Meyers, S.; Hiebert, S. W. ETO, a Target of t(8;21) in Acute Leukemia, Makes Distinct Contacts with Multiple Histone Deacetylases and Binds mSin3A through its Oligomerization Domain. Mol. Cell. Biol. 2001, 21, 6470–6483.CrossRefGoogle Scholar
  34. 34.
    Kadosh, D.; Struhl, K. Targeted Recruitment of the Sin3-Rpd3 Histone Deacetylase Complex Generates a Highly Localized Domain of Repressed Chromatin in Vivo. Mol. Cell. Biol. 1998, 18, 5121–5127.Google Scholar
  35. 35.
    Rundlett, S. E.; Carmen, A. A.; Suka, N.; Turner, B. M.; Grunstein, M. Transcriptional Repression by UME6 Involves Deacetylation of Lysine 5 of Histone H4 by RPD3. Nature 1998, 392, 831–835.CrossRefGoogle Scholar
  36. 36.
    Yang, W. M.; Yao, Y. L.; Sun, J. M.; Davie, J. R.; Seto, E. Isolation and Characterization of cDNAs Corresponding to an Additional Member of the Human Histone Deacetylase Gene Family. J. Biol. Chem. 1997, 272, 28001–28007.CrossRefGoogle Scholar
  37. 37.
    Emiliani, S.; Fischle, W.; Van Lint, C.; Al-Abed, Y.; Verdin, E. Characterization of a Human RPD3 Ortholog, HDAC3. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 2795–2800.CrossRefGoogle Scholar
  38. 38.
    Dangond, F.; Hafler, D. A.; Tong, J. K.; Randall, J.; Kojima, R.; Utku, N.; Gullans, S. R. Differential Display Cloning of a Novel Human Histone Deacetylase (HDAC3) cDNA from PHA-Activated Immune Cells. Biochem. Biophys. Res. Commun. 1998, 242, 648–652.CrossRefGoogle Scholar
  39. 39.
    Taunton, J.; Hassig, C. A.; Schreiber, S. L. A Mammalian Histone Deacetylase Related to the Yeast Transcriptional Regulator Rpd3p [see comments]. Science 1996, 272, 408–411.CrossRefGoogle Scholar
  40. 40.
    Nakajima, H.; Kim, Y. B.; Terano, H.; Yoshida, M.; Horinouchi, S. FR901228, a Potent Antitumor Antibiotic, is a Novel Histone Deacetylase Inhibitor. Exp. Cell Res. 1998, 241, 126–133.CrossRefGoogle Scholar
  41. 41.
    Duprez, E.; Ruchaud, S.; Houge, G.; Martin-Thouvenin, V.; Valensi, F.; Kastner, P.; Berger, R.; Lanotte, M. A Retinoid Acid “Resistant” t(15;17) Acute Promyelocytic Leukemia Cell Line: Isolation, Morphological, Immunological, and Molecular Features. Leukemia 1992, 6, 1281–1287.Google Scholar
  42. 42.
    Lanotte, M.; Martin-Thouvenin, V.; Najman, S.; Balerini, P.; Valensi, F.; Berger, R. NB4, a Maturation Inducible Cell Line with t(15;17) Marker Isolated from a Human Acute Promyelocytic Leukemia (M3). Blood 1991, 77, 1080–1086.Google Scholar
  43. 43.
    Schonberger, J.; Bauer, J.; Spruss, T.; Weber, G.; Chahoud, I.; Eilles, C.; Grimm, D. Establishment and Characterization of the Follicular Thyroid Carcinoma Cell Line ML-1. J. Mol. Med. 2000, 78, 102–110.CrossRefGoogle Scholar
  44. 44.
    Tsuchiya, S.; Yamabe, M.; Yamaguchi, Y.; Kobayashi, Y.; Konno, T.; Tada, K. Establishment and Characterization of a Human Acute Monocytic Leukemia Cell Line (THP-1). Int. J. Cancer 1980, 26, 171–176.CrossRefGoogle Scholar
  45. 45.
    Tsuchiya, S.; Kobayashi, Y.; Goto, Y.; Okumura, H.; Nakae, S.; Konno, T.; Tada, K. Induction of Maturation in Cultured Human Monocytic Leukemia Cells by a Phorbol Diester. Cancer Res 1982, 42, 1530–1536.Google Scholar
  46. 46.
    Blaheta, R. A.; Cinatl,, J., Jr. Anti-Tumor Mechanisms of Valproate: A Novel Role for an Old Drug. Med. Res. Rev. 2002, 22, 492–511.CrossRefGoogle Scholar
  47. 47.
    Gottlicher, M.; Minucci, S.; Zhu, P.; Kramer, O. H.; Schimpf, A.; Giavara, S.; Sleeman, J. P.; Lo Coco, F.; Nervi, C.; Pelicci, P. G.; Heinzel, T. Valproic Acid Defines a Novel Class of HDAC Inhibitors Inducing Differentiation of Transformed Cells. EMBO J 2001, 20, 6969–6978.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2004

Authors and Affiliations

  • Liwen Zhang
    • 1
  • Michael A. Freitas
    • 1
  • Joseph Wickham
    • 2
  • Mark R. Parthun
    • 2
  • Marko I. Klisovic
    • 3
  • Guido Marcucci
    • 3
  • John C. Byrd
    • 3
  1. 1.Department of ChemistryThe Ohio State UniversityColumbusUSA
  2. 2.Department of Molecular and Cellular BiochemistryThe Ohio State UniversityColumbusUSA
  3. 3.Department of Internal Medicine, Division of Hematology-OncologyThe Ohio State UniversityColumbusUSA

Personalised recommendations