A model for energy transfer in inelastic molecular collisions applicable at steady state or non-steady state and for an arbitrary distribution of collision energies

Focus: Ion Activation


A new model for energy exchange between translational and internal degrees of freedom in atom-molecule collisions has been developed. It is suitable for both steady state conditions (e.g., a large number of collisions with thermal kinetic energies) and non-steady state conditions with an arbitrary distribution of collision energies (e.g., single high-energy collisions). In particular, it does not require that the collision energies be characterized by a quasi-thermal distribution, but nevertheless it is capable of producing a Boltzmann distribution of internal energies with the correct internal temperature under quasi-thermal conditions. The energy exchange is described by a transfer probability density that depends on the initial relative kinetic energy, the internal energy of the molecule, and the amount of energy transferred. The probability density for collisions that lead to excitation is assumed to decrease exponentially with the amount of transferred energy. The probability density for de-excitation is obtained from microscopic reversibility. The model has been implemented in the ion trap simulation program ITSIM and coupled with an Rice-Rampsberger-Kassel-Marcus (RRKM) algorithm to describe the unimolecular dissociation of populations of ions. Monte Carlo simulations of collisional energy transfer are presented. The model is validated for non-steady state conditions and for steady state conditions, and the effect of the kinetic energy dependence of the collision cross-section on internal temperature is discussed. Applications of the model to the problem of chemical mass shifts in RF ion trap mass spectrometry are shown.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gilbert, R. G.; Smith, S. C. Theory of Unimolecular and Recombination Reactions; Oxford: Backwell Scientific Publications, 1990.Google Scholar
  2. 2.
    Flynn, G. W. Collision-Induced Energy Flow between Vibrational Modes of Small Polyatomic Molecules. Acc. Chem. Rev. 1981, 14, 334–341.CrossRefGoogle Scholar
  3. 3.
    Krajnovich, D. J.; Parmenter, C. S.; Catlett, D. L. State-to-State Vibrational Transfer in Atom-Molecule Collisions. Beams versus Bulbs. Chem. Rev. 1987, 87, 237–288.CrossRefGoogle Scholar
  4. 4.
    Oref, I.; Tardy, D. C. Energy Transfer in Highly Excited Large Polyatomic Molecules. Chem. Rev. 1990, 90, 1407–1445.CrossRefGoogle Scholar
  5. 5.
    Nordholm, S.; Börjesson, L. E. B.; Ming, L.; Svedung, H. Progress on the Modeling of the Collisional Energy Transfer Mechanism in Unimolecular Reactions. Ber. Bunsenges. Phys. Chem. 1997, 101, 574–580.Google Scholar
  6. 6.
    Smith, S. C.; McEwan, M. J.; Giles, K.; Smith, D.; Adams, N. G. Unimolecular Decomposition of a Polyatomic Ion in a Variable-Temperature Selected-Ion-Flow-Drift Tube: Experiment and Theoretical Interpretation. Int. J. Mass Spectrom. Ion Processes 1990, 96, 77–96.CrossRefGoogle Scholar
  7. 7.
    Barker, J. R. A State-to-State Statistical-Dynamical Theory for Large Molecule Collisional Energy Transfer. Ber. Bunsenges. Phys. Chem. 1997, 101, 566–573.Google Scholar
  8. 8.
    Goeringer, D. E.; McLuckey, S. A. Relaxation of Internally Excited High-Mass Ions Simulated Under Typical Quadrupole Ion Trap Storage Xonditions. Int. J. Mass Spectrom. 1998, 177, 163–174.CrossRefGoogle Scholar
  9. 9.
    Plass, W. R. Ph.D. Thesis, Justus-Liebig-Universität Giessen, Germany, 2001 pp 43–78.Google Scholar
  10. 10.
    Wells, J. M.; Plass, W. R.; Patterson, G. E.; Ouyang, Z.; Badman, E. R.; Cooks, R. G. Chemical Mass Shifts in Ion Trap Mass Spectrometry: Experiments and Simulations. Anal. Chem. 1999, 71, 3405–3415.CrossRefGoogle Scholar
  11. 11.
    Plass, W. R.; Li, H.; Cooks, R. G. Theory, Simulation, and Measurement of Chemical Mass Shifts in RF Quadrupole Ion Traps. Int. J. Mass Spectrom. 2003, 228, 237–267.CrossRefGoogle Scholar
  12. 12.
    March, R. E.; Londry, F. A. Theory of Quadrupole Mass Spectrometry. Practical Aspects of Ion Trap Mass Spectrometry, Vol. I; In March, R. E.; Todd, J. F. J., Eds.; CRC Press: Boca Raton, FL, 1995; pp 25–48.Google Scholar
  13. 13.
    Cooks, R. G.; Rockwood, A. L. The Thomson—A Suggested Unit for Mass Spectroscopists. Rapid Commun. Mass Spectrom. 1991, 5, 93.Google Scholar
  14. 14.
    Uggerud, E.; Derrick, P. J. Theory of Collisional Activation of Macromolecules. Impulsive Collisions of Organic Ions. J. Phys. Chem. 1991, 95, 1430–1436.CrossRefGoogle Scholar
  15. 15.
    Douglas, D. J. Applications of Collision Dynamics in Quadrupole Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1998, 9, 101–113.CrossRefGoogle Scholar
  16. 16.
    Fujiwara, M.; Naito, Y. Simulation for Internal Energy Deposition in Sustained Off-Resonance Irradiation Collisional Activation Using a Monte Carlo Method. Rapid Commun. Mass Spectrom. 1999, 13, 1633–1638.CrossRefGoogle Scholar
  17. 17.
    Tardy, D. C.; Rabinovitch, B. S. Intermolecular Vibrational Energy Transfer in Thermal Unimolecular Systems. Chem. Rev. 1977, 77, 369–408.CrossRefGoogle Scholar
  18. 18.
    Barker, J. R. Monte Carlo Calculations on Unimolecular Reactions, Energy Transfer, and IR-Multiphoton Decomposition. Chem. Phys. 1983, 77, 301–318.CrossRefGoogle Scholar
  19. 19.
    Gilbert, R. G.; King, K. D. Gas/Gas and Gas/Wall Average Energy Transfer from Very Low-Pressure Pyrolysis. Chem. Phys. 1980, 49, 367–375.CrossRefGoogle Scholar
  20. 20.
    Miller, L. A.; Cook, C. D.; Barker, J. R. Temperature Effects in the Collisional Deactivation of Highly Vibrationally Excited Pyrazine by Unexcited Pyrazine. J. Chem. Phys. 1996, 105, 3012–3018.CrossRefGoogle Scholar
  21. 21.
    Goeringer, D. E.; McLuckey, S. A. Evolution of Ion Internal Energy During Collisional Excitation in the Paul Ion Trap: A Stochastic Approach. J. Chem. Phys. 1996, 104, 2214–2221.CrossRefGoogle Scholar
  22. 22.
    Landau, L. D.; Lifshitz, E. M. Quantum Mechanics; Pergamon: London, 1959, pp 432–435.Google Scholar
  23. 23.
    Levine, R. D.; Bernstein, R. B. Molecular Reaction Dynamics and Chemical Reactivity; Oxford University Press: New York, 1987, 173–179.Google Scholar
  24. 24.
    Dunn, S. M.; Anderson, J. B. Direct Monte Carlo Simulation of Chemical Reaction Systems: Internal Energy Transfer and an Energy-Dependent Unimolecular Reaction. J. Chem. Phys. 1993, 99, 6607–6612.CrossRefGoogle Scholar
  25. 25.
    Porter, R. N.; Raff, L. M. Classical Trajectory Methods in Molecular Collisions. Dynamics of Molecular Collisions Part B; In Miller, W. H., Ed.; Plenum Press: New York, 1976; pp 1–52.Google Scholar
  26. 26.
    Drahos, D.; Vekey, K. Mass Kinetics: A Theoretical Model of Mass Spectra Incorporating Physical Processes, Reaction Kinetics, and Mathematical Descriptions. J. Mass Spectrom. 2001, 36, 237–263.CrossRefGoogle Scholar
  27. 27.
    Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P. Numerical Recipes in C; Cambridge University Press: Cambridge, 1992, pp 287–290, 359–362.Google Scholar
  28. 28.
    Julian, R. K.; Nappi, M.; Weil, C.; Cooks, R. G. Multi-Particle Simulation in the Ion Trap Mass Spectrometer: Resonant and Direct Current Pulse Excitation. J. Am. Soc. Mass Spectrom. 1995, 6, 57.CrossRefGoogle Scholar
  29. 29.
    Gioumousis, G.; Stevenson, D. P. Reactions of Gaseous Molecule Ions with Gaseous Molecules. V. Theory. J. Chem. Phys. 1958, 29, 294–299.CrossRefGoogle Scholar
  30. 30.
    Plass, W. R.; Gill, L. A.; Bui, H. A.; Cooks, R. G. Ion Mobility Measurements by DC Tomography in an RF Quadrupole Ion Trap. J. Phys. Chem. 2000, 104, 5059–5065.Google Scholar
  31. 31.
    Viehland, L. A.; Mason, E. A. Transport Properties of Gaseous Ions Over a Wide Energy Range. Part IV. At. Data Nucl. Data Tables 1995, 60, 37–95.CrossRefGoogle Scholar
  32. 32.
    Valentine, S. J.; Counterman, A. E.; Clemmer, D. E. A Database of 660 Peptide Ion Cross Sections: Use of Intrinsic Size Parameters for Bona Fide Predictions of Cross Sections. J. Am. Soc. Mass Spectrom. 1999, 10, 1188–1211.CrossRefGoogle Scholar
  33. 33.
    Henderson, S. C.; Li, J.; Counterman, A. E.; Clemmer, D. E. Intrinsic Size Parameters for Val, Ile, Leu, Gln, Thr, Phe, and Trp Residues from Ion Mobility Measurements of Polyamino Acid Ions. J. Phys. Chem. B 1999, 103, 8780–8785.CrossRefGoogle Scholar
  34. 34.
    Wysocki, V.; Kenttamaa, H. I.; Cooks, R. G. Internal Energy-Distributions of Isolated Ions After Activation by Various Methods. Int. J. Mass Spectrom Ion Processes 1987, 75, 181–208.CrossRefGoogle Scholar
  35. 35.
    Meroueh, O.; Hase, W. L. Energy Transfer Pathways in the Collisional Activation of Peptides. Int. J. Mass Spectrom. 2000, 201, 233–244.CrossRefGoogle Scholar
  36. 36.
    Rabrenovic, M.; Beynon, J. H.; Lee, S. H.; Kim, M. S. Collision-Induced Dissociation of keV Methane Molecular Ions. Analysis of the Pressure Dependence Using Probability Theory. Int. J. Mass Spectrom. Ion Processes 1985, 65, 197–210.CrossRefGoogle Scholar
  37. 37.
    Laskin, J.; Futrell, J. Internal Energy Distributions Resulting from Sustained Off-Resonance Excitation in Fourier Transform Resonance Mass Spectrometry. II. Fragmentation of the 1-Bromoaphthalene Radical Cation. J. Phys. Chem. 2000, 104, 5484–5494.Google Scholar
  38. 38.
    McLuckey, S. A. Principles of Collisional Activation in Analytical Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1992, 3, 599–614.CrossRefGoogle Scholar
  39. 39.
    Goeringer, D. E.; Duckworth, D. C.; McLuckey, S. A. Collision-Induced Dissociation in Quadrupole Ion Traps: Application of a Thermal Model to Diatomic Ions. J. Phys. Chem. A 2001, 105, 1882–1889.CrossRefGoogle Scholar
  40. 40.
    Gillespie, D. T. Exact Stochastic Simulation of Coupled Chemical Reactions. J. Chem. Phys. 1977, 81, 2340–2361.CrossRefGoogle Scholar
  41. 41.
    Baer, T.; Dutuit, O.; Mestdagh, H.; Rolando, C. Dissociation Dynamics of n-Butylbenzene Ions: The Competitive Production of m/z 91 and 92 Fragment Ions. J. Phys. Chem. 1988, 92, 5674–5679.CrossRefGoogle Scholar
  42. 42.
    Raznikov, V. V.; Kozlovsky, V. I.; Dodonov, A. F.; Raznikova, M. O. Heating of Ions Moving in a Gas Under the Influence of a Uniform and Constant Electric Field. Rapid Commun. Mass Spectrom. 1999, 13, 370–375.CrossRefGoogle Scholar
  43. 43.
    Laskin, J.; Byrd, M.; Futrell, J. Internal Energy Distributions Resulting from Sustained Off-Resonance Excitation in FTMS. I. Fragmentation of the Bromobenzene Radical Cation. Int. J. Mass Spectrom. 2000, 195/196, 285–302.CrossRefGoogle Scholar
  44. 44.
    Plomley, J. B.; Londry, F. A.; March, R. E. The Consecutive Fragmentation of n-Butylbenzene in a Quadrupole Ion Trap. Rapid Commun. Mass Spectrom. 1996, 10, 200–203.CrossRefGoogle Scholar
  45. 45.
    Syka, J. E. P. Commercialization of the Quadrupole Ion Trap. Practical Aspects of Ion Trap Mass Spectrometry, Vol. I; In March, R. E.; Todd, J. F. J., Eds.; CRC Press: Boca Raton, FL, 1995; p 169.Google Scholar
  46. 46.
    Nacson, S.; Harrison, A. G. Energy Transfer in Collisional Activation. Energy Dependence of the Fragmentation of n-Alkylbenzene Molecular Ions. Int. J. Mass Spectrom. Ion Processes 1985, 63, 325–337.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2003

Authors and Affiliations

  1. 1.II. Physikalisches InstitutJustus-Liebig-Universität GiessenGiessenGermany

Personalised recommendations