Quantitative evaluation of noncovalent chorismate mutase-inhibitor binding by ESI-MS

  • Silke Wendt
  • Gregor McCombie
  • Jürg Daniel
  • Alexander Kienhöfer
  • Donald Hilvert
  • Renato Zenobi


Electrospray time-of-flight mass spectrometry was used to quantitatively determine the dissociation constant of chorismate mutase and a transition state analogue inhibitor. This system presents a fairly complex stoichiometry because the native protein is a homotrimer with three equal and independent substrate binding sites. We can detect the chorismate mutase trimer as well as chorismate mutase-inhibitor complexes by choosing appropriate conditions in the ESI source. To verify that the protein-inhibitor complexes are specific, titration experiments with different enzyme variants and different inhibitors were performed. A plot of the number of bound inhibitors versus added inhibitor concentration revealed saturation behavior with 3:1 (inhibitor:functional trimer) stoichiometry for the TSA. The soft ESI conditions, the relatively high protein mass of 43.5 kDa, and the low charge state (high m/z) result in broad peaks, a typical problem in analyzing noncovalent protein complexes. Due to the low molecular weight of the TSA (226 Da) the peaks of the free protein and the protein with one, two or three inhibitors bound cannot be clearly resolved. For data analysis, relative peak areas of the deconvoluted spectra of chorismate mutase-inhibitor complexes were obtained by fitting appropriate peak shapes to the signals corresponding to the free enzyme and its complexes with one, two, or three inhibitor molecules. From the relative peak areas we were able to calculate a dissociation constant that agreed well with known solution-phase data. This method may be generally useful for interpreting mass spectra of noncovalent complexes that exhibit broad peaks in the high m/z range.


Relative Peak Area TEAB Deconvoluted Spectrum Chorismate Mutase Transition State Analogue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Beck, J. L.; Colgrave, M. L.; Ralph, S. F.; Sheil, M. M. Electrospray Ionization Mass Spectrometry of Oligonucleotide Complexes with Drugs, Metals, and Proteins. Mass Spectrom. Rev. 2001, 20, 61.CrossRefGoogle Scholar
  2. 2.
    Loo, J. A. Studying Noncovalent Protein Complexes by Electrospray Ionization Mass Spectrometry. Mass Spectrom. Rev. 1997, 16, 1–23.CrossRefGoogle Scholar
  3. 3.
    Loo, J. A. Electrospray Ionization Mass Spectrometry: A Technology for Studying Noncovalent Macromolecular Complexes. Int. J. Mass Spectrom. 2000, 200, 175–186.CrossRefGoogle Scholar
  4. 4.
    Daniel, J. M.; Friess, S. D.; Rajagopalan, S.; Wendt, S.; Zenobi, R. Quantitative Determination of Noncovalent Binding Interactions Using Soft Ionization Mass Spectrometry. Int. J. Mass Spectrom. 2002, 216, 1–27.CrossRefGoogle Scholar
  5. 5.
    Fändrich, M.; Tito, M. A.; Leroux, M. R.; Rostom, A. A.; Hartl, F. U.; Dobson, C. M.; Robinson, C. V. Observation of the Noncovalent Assembly and Disassembly Pathways of the Chaperone Complex MtGimC by Mass Spectrometry. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 14151–14155.CrossRefGoogle Scholar
  6. 6.
    Loo, J. A.; Hu, P.; McConnell, P.; Mueller, W. T.; Sawyer, T. K.; Thanabal, V. A Study of Src SH2 Domain Protein-Phosphopeptide Binding Interactions by Electrospray Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1997, 8, 234–243.CrossRefGoogle Scholar
  7. 7.
    Li, Y.-T.; Hsieh, Y.-L.; Henion, J. D.; Ocain, T. D.; Schiehser, G. A.; Ganem, B. Analysis of the Energetics of Gas-Phase Immunophilin-Ligand Complexes by Ion Spray Mass Spectrometry. J. Am. Chem. Soc. 1994, 116, 7487–7493.CrossRefGoogle Scholar
  8. 8.
    Robinson, C. V.; Chung, E. W.; Kragelund, B. B.; Knudsen, J.; Aplin, R. T.; Poulsen, F. M.; Dobson, C. M. Probing the Nature of Noncovalent Interactions by Mass Spectrometry. A Study of Protein-CoA Ligand Binding and Assembly. J. Am. Chem. Soc. 1996, 118, 8646–8653.CrossRefGoogle Scholar
  9. 9.
    Lim, H.-K.; Hsieh, Y. L.; Ganem, B.; Henion, J. Recognition of Cell-Wall Peptide Ligands by Vancomycin Group Antibiotics: Studies Using Ion Spray Mass Spectrometry. J. Mass Spectrom. 1995, 30, 708–714.CrossRefGoogle Scholar
  10. 10.
    Greig, M. J.; Gaus, H.-J.; Cummins, L. L.; Sasmor, H.; Griffey, R. H. Measurement of Macromolecular Binding Using Electrospray Mass Spectrometry. Determination of Dissociation Constants from Oligonucleotide-Serum Albumin Complexes. J. Am. Chem. Soc. 1995, 117, 10765–10766.CrossRefGoogle Scholar
  11. 11.
    Ayed, A.; Krutchinsky, A. N.; Ens, W.; Standing, K. G.; Duckworth, H. W. Quantitative Evaluation of Protein-Protein and Ligand-Protein Equilibria of a Large Allosteric Enzyme by Electrospray Ionization Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 1998, 12, 339–344.CrossRefGoogle Scholar
  12. 12.
    Smith, R. D.; Bruce, J. E.; Wu, Q.; Lei, P. New Mass Spectrometric Methods for the Study of Noncovalent Associations of Biopolymers. Chem. Soc. Rev. 1997, 26, 192–202.CrossRefGoogle Scholar
  13. 13.
    Griffey, R. H.; Sannes-Lowery, K. A.; Drader, J. J.; Mohan, V.; Swayze, E. E.; Hofstadler, S. A. Characterization of Low-Affinity Complexes Between RNA and Small Molecules Using Electrospray Ionization Mass Spectrometry. J. Am. Chem. Soc. 2000, 122, 9933–9938.CrossRefGoogle Scholar
  14. 14.
    Sannes-Lowery, K. A.; Griffey, R. H.; Hofstadler, S. A. Measuring Dissociation Constants of RNA and Aminoglycoside Antibiotics by Electrospray Mass Spectrometry. Anal. Biochem. 2000, 280, 264–271.CrossRefGoogle Scholar
  15. 15.
    Chook, Y. M.; Ke, H. M.; Lipscomb, W. N. Crystal-Structures of the Monofuctional Chorismate Mutase from Bacillus subtilis and Its Complex with a Transition-State Analog. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 8600–8603.CrossRefGoogle Scholar
  16. 16.
    Gray, J. V.; Even, D.; Knowles, J. R. Monofuctional Chorismate Mutase from Bacillus subtilis—Kinetic and C-13 NMR Studies on the Interactions of the Enzyme with Its Ligands. Biochemistry 1990, 29, 8872–8878.CrossRefGoogle Scholar
  17. 17.
    Bartlett, P. A.; Nakagawa, Y.; Johnson, C. R.; Reich, S. H.; Luis, A. Chorismate Mutase Inhibitors—Synthesis and Evaluation of Some Potential Transition-State Analogs. J. Org. Chem. 1988, 53, 3195–3210.CrossRefGoogle Scholar
  18. 18.
    Kast, P.; Grisostomi, C.; Chen, I. A.; Li, S.; Krengel, U.; Xue, Y.; Hilvert, D. A Strategically Positioned Cation is Crucial for Efficient Catalysis by Chorismate Mutase. J. Biol. Chem. 2000, 275, 36832–36838.CrossRefGoogle Scholar
  19. 19.
    Mattei, P.; Kast, P.; Hilvert, D. Bacillus subtilis Chorismate Mutase is Partially Diffusion-Controlled. Eur. J. Biochem. 1999, 261, 25–32.CrossRefGoogle Scholar
  20. 20.
    Sanger, F.; Nicklen, S.; Coulson, A. R. DNA Sequencing with Chain-Terminating Inhibitors. Proc. Natl. Acad. Sci. U.S.A. 1977, 74, 5463–5467.CrossRefGoogle Scholar
  21. 21.
    MacBeath, G.; Kast, P.; Hilvert, D. A Small, Thermostable, and Monofunctional Chorismate Mutase from the Archaeon Methanococcus jannaschii. Biochemistry 1998, 37, 10062–10073.CrossRefGoogle Scholar
  22. 22.
    Chao, H. S.; Berchtold, G. A. Inhibition of Chorismate Mutase Activity of Chorismate Mutase-Prephenate Dehydrogenase from Aerobacter aerogenes. Biochemistry 1982, 21, 2778–2781.CrossRefGoogle Scholar
  23. 23.
    Lemaire, D.; Marie, G.; Serani, L.; Laprevote, O. Stabilization of Gas-Phase Noncovalent Macromolecular Complexes in Electrospray Mass Spectrometry Using Aqueous Triethylammonium Bicarbonate Buffer. Anal. Chem. 2001, 73, 1699–1706.CrossRefGoogle Scholar
  24. 24.
    Felitsyn, N.; Peschke, M.; Kebarle, P. Origin and Number of Charges Observed on Multiply-Protonated Native Proteins Produced by ESI. Int. J. Mass Spectrom. 2002, 219, 39–62.CrossRefGoogle Scholar
  25. 25.
    Gamper, M.; Hilvert, D.; Kast, P. Probing the Role of the C-Terminus of Bacillus subtilis Chorismate Mutase by a Novel Random Protein-Termination Strategy. Biochemistry 2000, 39, 14087–14094.CrossRefGoogle Scholar
  26. 26.
    Cload, S. T.; Liu, D. R.; Pastor, R. M.; Schultz, P. G. Mutagenesis Study of Active Site Residues in Chorismate Mutase from Bacillus subtilis. J. Am. Chem. Soc. 1996, 118, 1787–1788.CrossRefGoogle Scholar
  27. 27.
    Reinsch, C. Smoothing by Spline Functions. Numer. Math. 1967, 10, 177–183.CrossRefGoogle Scholar
  28. 28.
    Tanford, C. Physical Chemistry of Macromolecules; Wiley: New York, 1961.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2003

Authors and Affiliations

  • Silke Wendt
    • 1
  • Gregor McCombie
    • 1
  • Jürg Daniel
    • 1
  • Alexander Kienhöfer
    • 1
  • Donald Hilvert
    • 1
  • Renato Zenobi
    • 1
  1. 1.Laboratory of Organic ChemistrySwiss Federal Institute of Technology (ETH)ZürichSwitzerland

Personalised recommendations