Bulletin of Mathematical Biology

, Volume 67, Issue 1, pp 79–99

A mathematical model of Doxorubicin treatment efficacy for non-Hodgkin’s lymphoma: Investigation of the current protocol through theoretical modelling results

  • B. Ribba
  • K. Marron
  • Z. Agur
  • T. Alarcón
  • P. K. Maini
Article

Abstract

Doxorubicin treatment outcomes for non-Hodgkin’s lymphomas (NHL) are mathematically modelled and computationally analyzed. The NHL model includes a tumor structure incorporating mature and immature vessels, vascular structural adaptation and NHL cell-cycle kinetics in addition to Doxorubicin pharmacokinetics (PK) and pharmacodynamics (PD). Simulations provide qualitative estimations of the effect of Doxorubicin on high-grade (HG), intermediate-grade (IG) and low-grade (LG) NHL. Simulation results imply that if the interval between successive drug applications is prolonged beyond a certain point, treatment will be inefficient due to effects caused by heterogeneous blood flow in the system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agur, Z., 1985. Randomness, synchrony and population persistence. J. Theor. Biol. 112, 677–693.MathSciNetGoogle Scholar
  2. Agur, Z., Arnon, R., Schechter, B., 1988. Reduction of cytotoxicity to normal tissues by new regimens of phasespecific drugs. Math. Biosci. 92, 1–15.CrossRefMATHGoogle Scholar
  3. Alarcón, T., Byrne, H.M., Maini, P.K., 2003. A cellular automaton model for tumor growth in inhomogeneous environment. J. Theor. Biol. 225, 257–274.CrossRefGoogle Scholar
  4. Alarcń, T., Byrne, H.M., Maini, P.K., Design principle of vascular beds: effects of blood rheology (in preparation).Google Scholar
  5. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J.D., 1994. Molecular Biology of the Cell. Garland Publishing, New York and London.Google Scholar
  6. Al-Ismail, S.A., Whittaker, J.A., Gough, J., 1987. Combination chemotherapy including Epirubicin for the management of non-Hodgkin’s lymphoma. Eur. J. Cancer Clin. Oncol. 23, 1379–1384.CrossRefGoogle Scholar
  7. Anderson, A.R.A., Chaplain, M.A.J., 1998. Continuous and discrete mathematical models of tumour-induced angiogenesis. Bull. Math. Biol. 60, 857–899.CrossRefMATHGoogle Scholar
  8. Anderson, A.R.A., Chaplain, M.A.J., Newman, E.L., Steele, R.J.C., Thompson, A.M., 2000. Mathematical modelling of tumor invasion and metastasis. J. Theor. Med. 2, 129–154.MATHGoogle Scholar
  9. Arakelyan, L., Vainstein, V., Agur, Z., 2002. A computer algorithm describing the process of vessel formation and maturation and its use for predicting the effects of anti-angiogenic and multi-maturation therapy on vascular tumor growth. Angiogenesis 5, 203–214.CrossRefGoogle Scholar
  10. Barranco, S.C., 1984. Cellular and molecular effects of Adriamycin on dividing and nondividing cells. Pharmacol. Ther. 24, 303–319.CrossRefGoogle Scholar
  11. Bast, R.C., Kufe, D.W., Pollock, R.E., Weichselbaum, R.R., Holland, J.F., 2000. Cancer Medicine. BC Decker Inc, Canada.Google Scholar
  12. Benjamin, L.E., Golijanin, D., Itin, A., Pode, D., Keshet, E., 1999. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J. Clin. Invest. 103, 157–158.CrossRefGoogle Scholar
  13. Blagosklonny, M.V., Pardee, A.B., 2002. The restriction point of the cell cycle. Cell Cycle 1, 103–110.Google Scholar
  14. Boring, C.C., Squires, T.S., Tong, T., Montgomery, S., 1994. Cancer statistics, 1994. C.A. Cancer J. Clin. 44, 7–26.Google Scholar
  15. Brons, P.P., Raemaekers, J.M., Bogman, M.J., van Erp, P.E., Boezeman, J.B., Pennings, A.H., Wessels, H.M, Haanen, C., 1992. Cell cycle kinetics in malignant lymphoma studied with in vivo Iodeoxyuridine administration, nuclear Ki-67 staining, and flow cytometry. Blood 1 80, 2336–2343.Google Scholar
  16. Casciari, J.J., Sotirchos, S.V., Sutherland, R.M., 1998. Glucose diffusivity in multicellular tumor spheroids. Cancer Res. 48, 3905–3909.Google Scholar
  17. Cojocaru, L., Agur, Z., 1992. A theoretical analysis of interval drug dosing for cell-cycle-phase-specific drugs. Math. Biosci. 109, 85–97.CrossRefMATHGoogle Scholar
  18. Couderc, B., Dujols, J.P., Mokhtari, F., Norkowski, J.L., Slawinski, J.C., Schlaifer, D., 2000. The management of adult aggressive non-Hodgkin’s lymphomas. Crit. Rev. Oncol. Hematol. 35, 33–48.Google Scholar
  19. Crone, C., Levitt, D.G., 1984. Handbook of Physiology: A Critical, Comprehensive Presentation of Physiological Knowledge and Concepts. American Physiological Society, Bethesda, ML.Google Scholar
  20. Deutsch, A., Dormann, S., 2002. Modeling of avascular tumor growth with a hybrid cellular automaton. In Silico Biol. 2, 1–14.Google Scholar
  21. Enden, G, Popel, A.S., 1994. A numerical study of plasma skimming in small vascular bifurcations. J. Biomech. Eng. 116, 79–88.Google Scholar
  22. Erlanson, M., Lindth, J., Zackrisson, B., Landberg, G., Roos, G., 1995. Cell kinetic analysis of non-Hodgkin’s lymphomas using in vivo Iodeoxyuridine incorporation and flow cytometry. Hematol. Oncol. 13, 207–217.Google Scholar
  23. Hackbusch, W., 1985. Multigrid Methods and Applications. Springer, Berlin.Google Scholar
  24. Hardman, J.G., Limbird, L.E., Gilman, A.G., 2001. The Pharmacological Basis of Therapeutics. McGraw-Hill Companies.Google Scholar
  25. Honda, H., Yoshizato, K., 1997. Formation of branching pattern of blood vessels in the wall of the avian yolk sac studied by computer simulation. Dev. Growth Differ. 39, 581–589.CrossRefGoogle Scholar
  26. Jain, R.K., 2001. Delivery of molecular and cellular medicine to solid tumours. Adv. Drug. Deliv. Rev. 46, 146–168.CrossRefGoogle Scholar
  27. Konerding, M.A., Fait, E., Gaumann, A., 2001. 3D microvascular architecture of pre-cancerous lesions and invasive carcinomas of the colon. Br. J. Cancer. 84, 1354–1362.CrossRefGoogle Scholar
  28. Kwok, T.T., Twentyman, P.R., 1985. The response to cytotoxic drugs of EMT6 cells treated either as intact or disaggregated spheroid. Br. J. Cancer. 51, 211–218.Google Scholar
  29. Lankelma, J., Luque, R.F., Dekker, H., Schinkel, W., Pinedo, H., 2000. A mathematical model of drug transport in human breast cancer. Microvasc. Res. 59, 149–161.CrossRefGoogle Scholar
  30. Lapela, M., Leskinen, S., Minn, H.R., Lindholm, P., Klemi, P.J., Soderstrom, K.O., Bergman, J., Haaparanta, M., Ruotsalainen, U., Solin, O., 1995. Increased glucose metabolism in untreated non-Hodgkin’s lymphoma: a study with positron emission tomography and fluorine-19-fluorodeoxyglucose. Blood 1 86, 3522–3527.Google Scholar
  31. Lepage, E., Gisselbrecht, C., Haioun, C., Sebban, C., Tilly, H., Bosly, A., Morel, P., Herbrecht, R., Reyes, F., Coiffier, B., 1993. Prognostic significance of received relative dose intensity in non-Hodgkin’s lymphoma patients: application to LNH-87 protocol. The GELA. (Groupe d’Etude des Lymphomes de l’Adulte). Ann. Oncol. 4, 651–656.Google Scholar
  32. Liotta, L.A., Saidel, G.M., Kleinerman, J., 1977. Diffusion model of tumor vascularization and growth. Bull. Math. Biol. 39, 117–128.CrossRefGoogle Scholar
  33. McCormick, S.F., 1987. Multigrid Methods. SIAM, Philadelphia.MATHGoogle Scholar
  34. McDougall, S.R., Anderson, A.R.A., Chaplain, M.A.J., Sherratt, J.A., 2002. Mathematical modelling of flow through vascular networks: Implications for tumour-induced angiogenesis and chemotherapy strategies. Bull. Math. Biol. 64, 673–702.CrossRefGoogle Scholar
  35. Nagai, K., Nagasawa, K., Sadzuka, Y., Tsujimoto, M., Takara, K., Ohnishi, N., Yokoyama, T., Fujimoto, S., 2002. Relationships between the in vitro cytotoxicity and transport characteristics of Pirarubicin and Doxorubicin in M5076 ovarian sarcoma cells, and comparison with those in Ehrlich ascites carcinoma cells. Cancer Chemother. Pharmacol. 49, 244–250.CrossRefGoogle Scholar
  36. Orme, M.E., Chaplain, M.A.J., 1996. A mathematical model of vascular tumour growth and invasion. Math. Comput. Modelling 23, 43–60.MathSciNetCrossRefMATHGoogle Scholar
  37. Patel, A.A., Gawlinski, E.T., Lemieux, S.K., Gatenby, R.A., 2001. A cellular automaton model of early tumor growth and invasion. J. Theor. Biol. 7 213, 315–331.MathSciNetCrossRefGoogle Scholar
  38. Pries, A.R., Secomb, T.W., Gaehtgens, P., 1998. Structural adaptation and stability of microvascular networks: theory and simulations. Am. J. Physiol. 275, H349–H360.Google Scholar
  39. Pries, A.R., Secomb, T.W., Gessner, T., Sperandio, M.B., Gross, J.F., Gaehtgens, P., 1994. Resistance to blood flow in microvessels in vivo. Circ. Res. 75, 904–915.Google Scholar
  40. Stokke, T., Holte, H., Smedshammer, L., Smeland, E.B., Kaalhus, O., Steen, H.B., 1998. Proliferation and apoptosis in malignant and normal cells in B-cell non-Hodgkin’s lymphomas. Br. J. Cancer 77, 1832–1838.Google Scholar
  41. Willemse, F., Nap, M., de Bruijn H.W.A., Hollema, H., Morphological parameters of vasculature in tumor marker biodynamics. Anal. Quant. Histol. (in press).Google Scholar
  42. Wilson, J.D, Foster, D.W., 1992. Williams Textbook of Endocrinology. W.B. Saunders Company.Google Scholar
  43. Yancopoulos, G.D., Davis, S., Gale, N.W., Rudge, J.S., Wiegand, S.J., Holash, J., 2000. Vascular specific growth factors and blood vessel formation. Nature 407, 242–248.CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2005

Authors and Affiliations

  • B. Ribba
    • 1
    • 3
  • K. Marron
    • 1
  • Z. Agur
    • 1
  • T. Alarcón
    • 2
    • 4
  • P. K. Maini
    • 2
  1. 1.Institute for Medical BioMathematicsBene AtarothIsrael
  2. 2.Centre for Mathematical Biology, Mathematical InstituteUniversity of OxfordOxfordUK
  3. 3.Clinical Pharmacology Unit, Faculty of Medicine LaënnecUniversity of LyonLyonFrance
  4. 4.Bioinformatics Unit, Department of Computer ScienceUniversity College LondonLondonUK

Personalised recommendations