Bulletin of Mathematical Biology

, Volume 67, Issue 1, pp 15–32 | Cite as

Models for the dynamics and order of immunoglobulin isotype switching

  • Barak Yaish
  • Ramit Mehr


Experiments show that class switch recombination (CSR) depends on the number of divisions that the cell has performed rather than on the time since stimulation. Using computer simulations of CSR dynamics in B cell populations, we addressed the following questions. How does the probability of CSR depend on the number of divisions that a cell has performed? How does the cell decide which isotype to switch to? Does this decision depend on the distance between the genes of the pre-switch and the post-switch isotype? Our results indicate that post-switch isotype choice may be determined indirectly by the probabilities of division (which is fixed) and of switching per division (which increases as a function of the number of divisions that a cell performs), and more directly by a bias in the choice of the post-switch C gene segment towards those proximal to the pre-switch C gene.


Mathematical Biology CD40 Ligand Class Switch Recombination Isotype Switching Activation Induce Cytidine Deaminase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



class switch recombination


activation-induced cytidine deaminase


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armitage, R.J. et al., 1992. Molecular and biological characterization of a murine ligand for CD40. Nature 357, 80–82.CrossRefGoogle Scholar
  2. Avery, D.T., Kalled, S.L., Ellyard, J.I., Ambrose, C., Bixler, S.A., Thien, M., Brink, R., Mackay, F., Hodgkin, P.D., Tangye, S.G., 2003. BAFF selectively enhances the survival of plasmablasts generated from human memory B cells. J. Clin. Invest. 112, 286–297.CrossRefGoogle Scholar
  3. Coffman, R.L., Lebman, D.A., Shrader, B., 1989. Transforming growth factor beta specifically enhances IgA production by lipopolysaccharide-stimulated murine B lymphocytes. J. Exp. Med. 170, 1039–1044.CrossRefGoogle Scholar
  4. Daniels, G.A., Lieber, M.R., 1995. RNA-DNA complex formation upon transcription of immunoglobulin switch region: implications for the mechanism and regulation of class switch recombination. Nucleic Acids Res. 23, 5006–5011.Google Scholar
  5. Deenick, E.K., Hasbold, J., Hodgkin, P.D., 1999. Switching to IgG3, IgG2b, and IgA is division linked and independent, revealing a stochastic framework for describing differentiation. J. Immunol. 63, 4707–4714.Google Scholar
  6. Durandy, A., Honjo, T., 2001. Human genetic defects in class-switch recombination (hyper-IgM syndromes). Curr. Opin. Immunol. 13, 543–548.CrossRefGoogle Scholar
  7. Ehrenstein, M.R., O’Keefe, T.L., Davies, S.L., Neuberger, M.S., 1998. Targeted gene disruption reveals a role for natural secretory IgM in the maturation of the primary immune response. Proc. Natl. Acad. Sci. USA 95, 10089–10093.Google Scholar
  8. Gould, H.J., Sutton, B.J., Beavil, A.J., Beavil, R.L., McCloskey, N., Coker, H.A., Fear, D., Smurthwaite, L., 2003. The biology of IgE and the basis of allergic disease. Annu. Rev. Immunol. 21, 579–628.CrossRefGoogle Scholar
  9. Gregorek, H., Madalinski, K., Woynarowski, M., Mikolajewicz, J., Syczewska, M., Socha, J., 2000. IgG subclass distribution of hepatitis B surface antigen antibodies induced in children with chronic hepatitis B infection after interferon-alpha therapy. J. Infect. Dis. 181, 2059–5062.CrossRefGoogle Scholar
  10. Hasbold, J., Gett, A.V., Rush, J.S., Deenick, E., Avery, D., Jun, J., Hodgkin, P.D., 1999. Quantitative analysis of lymphocyte differentiation and proliferation in vitro using carboxyfluorescein diacetate succinimidyl ester. Immunol. Cell. Biol. 77, 516–522.CrossRefGoogle Scholar
  11. Hasbold, J., Lyons, A.B., Kehry, M.R., Hodgkin, P.D., 1998. Cell division number regulates IgG1 and IgE switching of B cells following stimulation by CD40 ligand and IL-4. Eur. J. Immunol. 28, 1040–1051.CrossRefGoogle Scholar
  12. Hodgkin, P.D., Lee, J.H., Lyons, A.B., 1996. B cell differentiation and isotype switching is related to division cycle number. J. Exp. Med. 184, 277–281.CrossRefGoogle Scholar
  13. Jones, S., Chen, Y.W., Isakson, P., Layton, J., Pure, E., Word, C., Krammer, P.H., Tucker, P., Vitetta, E.S., 1983. Effect of T cell-derived lymphokines containing B cell differentiation factor(s) for IgG (BCDF gamma) on gamma-specific mRNA in murine B cells. J. Immunol. 131, 3049–3051.Google Scholar
  14. Kinoshita, K., Lee, C.G., Tashiro, J., Muramatsu, M., Chen, X.C., Yoshikawa, K., Honjo, T., 1999. Molecular mechanism of immunoglobulin class switch recombination. Cold. Spring. Harbor. Symp. Quant. Biol. 64, 217–226.CrossRefGoogle Scholar
  15. Kinoshita, K., Tashiro, J., Tomita, S., Lee, C.G., Honjo, T., 1998. Target specificity of immunoglobulin class switch recombination is not determined by nucleotide sequences of S regions. Immunity 9, 849–858.CrossRefGoogle Scholar
  16. Kunimoto, D.Y., Harriman, G.R., Strober, W., 1988. Regulation of IgA differentiation in CH12LX B cells by lymphokines. IL-4 induces membrane IgM-positive CH12LX cells to express membrane IgA and IL-5 induces membrane IgA-positive CH12LX cells to secrete IgA. J. Immunol. 141, 713–720.Google Scholar
  17. Kuppers, R., Klein, U., Hansmann, M.L., Rajewsky, K., 1999. Cellular origin of human B-cell lymphomas. N. Engl. J. Med. 341, 1520–1529.CrossRefGoogle Scholar
  18. Liu, Y.J., Zhang, J., Lane, P.J., Chan, E.Y., MacLennan, I.C., 1991. Sites of specific B cell activation in primary and secondary responses to T cell-dependent and T cell-independent antigens. Eur. J. Immunol. 21, 2951–2962.Google Scholar
  19. Maizels, N., 1999. Immunoglobulin class switch recombination: will genetics provide new clues to mechanism? Am. J. Hum. Gene. 64, 1270–1275.CrossRefGoogle Scholar
  20. Maliszewski, C.R., Grabstein, K., Fanslow, W.C., Armitage, R., Spriggs, M.K., Sato, T.A., 1993. Recombinant CD40 ligand stimulation of murine B cell growth and differentiation: cooperative effects of cytokines. Eur. J. Immunol. 23, 1044–1049.Google Scholar
  21. McCall, M.N., Hodgkin, P.D., 1999. Switch recombination and germ-line transcription are division-regulated events in B lymphocytes. Biochim. Biophys. Acta. 1447, 43–50.Google Scholar
  22. McIntyre, T.M., Kehry, M.R., Snapper, C.M., 1995. Novel in vitro model for high-rate IgA class switching. J. Immunol. 154, 3156–3161.Google Scholar
  23. McIntyre, T.M., Klinman, D.R., Rothman, P., Lugo, M., Dasch, J.R., Mond, J.J., Snapper, C.M., 1993. Transforming growth factor β1 selectivity stimulates IgG2b secretion by LipoPolySaccharide murine B cells. J. Exp. Med. 177, 1031–1037.CrossRefGoogle Scholar
  24. Mehr, R., Perelson, A.S., Fridkis-Hareli, M., Globerson, A., 1997. Regulatory feedback pathways in the thymus. Immunol. Today 18, 581–585.CrossRefGoogle Scholar
  25. Mehr, R., Shahaf, G., Sah, A., Cancro, M., 2003. Asynchronous differentiation models explain bone marrow labeling kinetics and predict reflux between the pre-and immature B cell pools. Int. Immunol. 15, 301–312.CrossRefGoogle Scholar
  26. Mehr, R., Shannon, M., Litwin, S., 1999. Biased receptor editing in B cells implications for allelic exclusion. J. Immunol. 163, 1793–1798.Google Scholar
  27. Moon, H.B., Severinson, E., Heusser, C., Johansson, S.G., Moller, G., Persson, U., 1989. Regulation of IgG1 and IgE synthesis by interleukin 4 in mouse B cells. Scand. J. Immunol. 30, 355–361.Google Scholar
  28. Muramatsu, M., Kinoshita, K., Fagarasan, S., Yamada, S., Shinkai, Y., Honjo, T., 2000. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563.CrossRefGoogle Scholar
  29. Mussmann, R., Courtet, M., Schwager, J., Du Pasquier, L., 1997. Microsites for immunoglobulin-switch recombination breakpoints from Xenopus to mammals. Eur. J. Immunol. 27, 2610–2619.Google Scholar
  30. Nagaoka, H., Muramatsu, M., Yamamura, N., Kinoshita, K., Honjo, T., 2002. Activation-induced deaminase (AID)-directed hypermutation in the immunoglobulin Smu region: implication of AID involvement in a common step of class switch recombination and somatic hypermutation. J. Exp. Med. 195, 529–534.CrossRefGoogle Scholar
  31. Pecanha, L.M., Yamaguchi, H., Lees, A., Noelle, R.J., Mond, J.J., Snapper, C.M., 1993. Dextran-conjugated anti-IgD antibodies inhibit T cell-mediated IgE production but augment the synthesis of IgM and IgG. J. Immunol. 150, 2160–2168.Google Scholar
  32. Petersen-Mahrt, S.K., Harris, R.S., Neuberger, M.S., 2002. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418, 99–103.CrossRefGoogle Scholar
  33. Phan, T.G., Amesbury, M., Gardam, S., Crosbie, J., Hasbold, J., Hodgkin, P.D., Basten, A., Brink, R., 2003. B cell receptor-independent stimuli trigger immunoglobulin (Ig) class switch recombination and production of IgG autoantibodies by anergic self-reactive B cells. J. Exp. Med. 197, 845–860.CrossRefGoogle Scholar
  34. Reaban, M.E., Griffin, J.A., 1990. Induction of RNA-stabilized DNA conformers by transcription of an immunoglobulin switch region. Nature 348, 342–344.CrossRefGoogle Scholar
  35. Revy, P. et al., 2000. Activation induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper IgM syndrome (HIGM2). Cell 102, 565–575.CrossRefGoogle Scholar
  36. Rush, J.S., Hasbold, J., Hodgkin, P.D., 2002. Cross-linking surface Ig delays CD40 ligand-and IL-4-induced B cell Ig class switching and reveals evidence for independent regulation of B cell proliferation and differentiation. J. Immunol. 168, 2676–2682.Google Scholar
  37. Rush, J.S., Hodgkin, P.D., 2001. B cells activated via CD40 and IL-4 undergo a division burst but require continued stimulation to maintain division, survival and differentiation. Eur. J. Immunol. 4, 1150–1159.CrossRefGoogle Scholar
  38. Shannon, M., Mehr, R., 1999. Reconciling repertoire shift with affinity maturation: the role of deleterious mutations. J. Immunol. 162, 3950–3956.Google Scholar
  39. Shimoda, M., Nakamura, T., Takahashi, Y., Asanuma, H., Tamura, S., Kurata, T., Mizuochi, T., Azuma, N., Kanno, C., Takemori, T., 2001. Isotype-specific selection of high affinity memory B cells in nasal-associated lymphoid tissue. J. Exp. Med. 194, 1597–1607.CrossRefGoogle Scholar
  40. Snapper, C.M., Finkelman, F.D., Paul, W.E., 1988a. Differential regulation of IgG1 and IgE synthesis by interleukin 4. J. Exp. Med. 167, 183–196.CrossRefGoogle Scholar
  41. Snapper, C.M., Finkelman, F.D., Paul, W.E., 1988b. Regulation of IgG1 and IgE production by interleukin 4. Immunol. Rev. 102, 51–75.CrossRefGoogle Scholar
  42. Snapper, C.M., Kehry, M.R., Castle, B.E., Mond, J.J., 1995. Multivalent, but not divalent, antigen receptor crosslinkers synergize with CD40 ligand for induction of Ig synthesis and class switching in normal murine B cells. A redefinition of the TI-2 vs T cell-dependent antigen dichotomy. J. Immunol. 154, 1177–1187.Google Scholar
  43. Snapper, C.M., Marcu, K.B., Zelazowski, P., 1997. The immunoglobulin class switch: beyond ‘accessibility’. Immunity 6, 217–223.CrossRefGoogle Scholar
  44. Snapper, C.M., McIntyre, T.M., Mandler, R., Pecanha, L.M., Finkelman, F.D., Lees, A., Mond, J.J., 1992. Induction of IgG3 secretion by Interferon γ: a model for T cell-independent class switching in response to T cell-independent type 2 antigens. J. Exp. Med. 175, 1367–1371.CrossRefGoogle Scholar
  45. Snapper, C.M., Mond, J.J., 1993. Towards a comprehensive view of immunoglobulin class switching. Immunol. Today 14, 15–17.CrossRefGoogle Scholar
  46. Snapper, C.M., Paul, W.E., 1987. IFN-γ and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science 236, 944–947.Google Scholar
  47. Snapper, C.M., Pecanha, L.M., Levine, A.D., Mond, J.J., 1991. IgE class Switching is critically dependent upon the nature of the B cell activator, in addition to the presence of IL-4. J. Immunol. 147, 1163–1170.Google Scholar
  48. Snapper, C.M., Peschel, C., Paul, W.E., 1988c. IFN-α stimulates IgG2a secretion by murine B cells stimulated with bacterial Lipopolysaccharide. J. Immunol. 140, 2121–2127.Google Scholar
  49. Sonoda, E., Matsumoto, R., Hitoshi, Y., Ishii, T., Sugimoto, M., Araki, S., Tominaga, A., Yamaguchi, N., Takatsu, K., 1989. Transforming growth factor beta induces IgA production and acts additively with interleukin 5 for IgA production. J. Exp. Med. 170, 1415–1420.CrossRefGoogle Scholar
  50. Stavnezer, J., 1996. Immunoglobulin class switch. Curr. Opin. Immunol. 8, 199–205.CrossRefGoogle Scholar
  51. Stavnezer, J., 2000. Molecular processes that regulate class switching. Curr. Top. Microbiol. Immunol. 245, 127–168.Google Scholar
  52. Stavnezer, J., Radcliffe, G., Lin, Y.C., Nietupski, J., Berggren, L., Sitia, R., Severinson, E., 1988. Immunoglobulin heavy-chain switching may be directed by prior induction of transcripts from constant-region genes. Proc. Natl. Acad. Sci. 85, 7704–7708.CrossRefGoogle Scholar
  53. Tangye, S.G., Avery, D.T., Deenick, E.K., Hodgkin, P.D., 2003a. Intrinsic differences in the proliferation of naïve and memory B cells as a mechanism for enhanced secondary immune responses. J. Immunol. 170, 686–694.Google Scholar
  54. Tangye, S.G., Avery, D.T., Hodgkin, P.D., 2003b. A division-linked mechanism for the rapid generation of Ig-secreting cells from human memory B cells. J. Immunol. 170, 261–269.Google Scholar
  55. Tangye, S.G., Ferguson, A., Avery, D.T., Ma, C.S., Hodgkin, P.D., 2002. Isotype switching by human B cells is division-associated and regulated by cytokines. J. Immunol. 169, 4298–4306.Google Scholar
  56. White, H., Gray, D., 2000. Analysis of immunoglobulin (Ig) isotype diversity and IgM/D memory in the response to phenyl-oxazolone. J. Exp. Med. 191, 2209–2220.CrossRefGoogle Scholar
  57. Wrammert, J., Kallberg, E., Agace, W.W., Leanderson, T., 2002. Ly6C expression differentiates plasma cells from other B cell subsets in mice. Eur. J. Immunol. 32, 97–103.CrossRefGoogle Scholar
  58. Xu, L., Rothman, P., 1994. IFN-gamma represses epsilon germline transcription and subsequently down-regulates switch recombination to epsilon. Int. Immunol. 6, 515–521.Google Scholar
  59. Yuan, D., Dang, T., Bibi, R., 2001. Inappropriate expression of IgD from a transgene inhibits the function of antigen-specific memory B cells. Cell Immunol. 211, 61–70.CrossRefGoogle Scholar
  60. Zelazowski, P., Collins, J.T., Dunnick, W., Snapper, C.M., 1995. Antigen receptor cross-linking differentially regulates germ-line CH ribonucleic acid expression in murine B cells. J. Immunol 154, 1223–1231.Google Scholar
  61. Zhang, K., 2000. Immunoglobulin class switch recombination machinery: progress and challenges. Clin. Immunol. 95, 1–8.CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2005

Authors and Affiliations

  1. 1.Faculty of Life SciencesBar-Ilan UniversityRamat-GanIsrael

Personalised recommendations