Comparison of three models predicting developmental milestones given environmental and individual variation

  • Estella Gilbert
  • James A. Powell
  • Jesse A. Logan
  • Barbara J. Bentz
Article

Abstract

In all organisms, phenotypic variability is an evolutionary stipulation. Because the development of poikilothermic organisms depends directly on the temperature of their habitat, environmental variability is also an integral factor in models of their phenology. In this paper we present two existing phenology models, the distributed delay model and the Sharpe and DeMichele model, and develop an alternate approach, called the Extended von Foerster model, based on the age-structured McKendrick-von Foerster partial differential model. We compare the models theoretically by examining the biological assumptions made in the basic derivation of each approach. In particular, we focus on each model’s ability to incorporate variability among individuals as well as variability in the environment. When compared against constant temperaturemountain pine beetle (Dendroctonus ponderosae Hopkins) laboratory developmental data, the Extended von Foerster model exhibits the highest correlation between theory and observation.

References

  1. Amman, G. D. (1973). Population changes of the mountain pine beetle in relation to elevation. Environ. Ent. 2, 541–547.Google Scholar
  2. Bentz, B. J., J. A. Logan and G. D. Amman (1991). Temperature-dependent development of the mountain pine beetle (Coleoptera: Scolytidae) and simulation of its phenology. Can. Entomol. 123, 1083–1094.Google Scholar
  3. Bentz, B. J., J. A. Logan and J. C. Vandygriff (2001). Latitudinal variation in Dendroctonus ponderosae (Coleoptera: Scolytidae) development time and adult size. Can. Entomol. 133, 357–387.CrossRefGoogle Scholar
  4. DuChateau, P. and D. W. Zachmann (1986). Schaum’s Outline of Theory and Problems of Partial Differential Equations, New York: McGraw-Hill.Google Scholar
  5. Edelstein-Keshet, L. (1988). Mathematical Models in Biology, New York: McGraw-Hill.MATHGoogle Scholar
  6. Forrester, J. W. (1961). Industrial Dynamics, Cambridge, Mass: M.I.T. Press.Google Scholar
  7. Getz, W. M. (1998). An introspection on the art of modeling in population ecology. Bioscience 48, 540–552.CrossRefGoogle Scholar
  8. Heath, M. T. (1997). Scientific Computing: An Introductory Survey, New York: WCB/McGraw-Hill.Google Scholar
  9. Hopper, K. R. (1999). Risk-spreading and bet-hedging in insect population ecology. Annu. Rev. Entomol. 44, 535–560.CrossRefGoogle Scholar
  10. Jenkins, J. L., J. A. Powell, J. A. Logan and B. J. Bentz (2001). Low seasonal temperatures promote life cycle synchronization. Bull. Math. Biol. 63, 573–595.CrossRefGoogle Scholar
  11. Logan, J. D. (1997). Applied Mathematics, 2nd edn, New York: John Wiley & Sons, Inc.MATHGoogle Scholar
  12. Logan, J. A. and G. D. Amman (1986). A distribution model for egg development in mountain pine beetle. Can. Entomol. 118, 361–372.Google Scholar
  13. Logan, J. A. and B. J. Bentz (1999). Model analysis of mountain pine beetle seasonality. Environ. Ent. 28, 924–934.Google Scholar
  14. Logan, J. A. and J. A. Powell (2001). Ghost forests, global warming and the mountain pine beetle. Amer. Entomol 47, 160–173, Fall 2001.Google Scholar
  15. MacDonald, N. (1978). Time Lags in Biological Models, S. A. Levin (Ed.), Lecture Notes Biomathematics 27, Berlin, Heidelberg, New York: Springer.Google Scholar
  16. Manetsch, T. J. (1966). Transfer function representation of the behavior of a class of economic processes. IEEE Trans. Control. AC-11, 693–698.CrossRefGoogle Scholar
  17. Manetsch, T. J. (1976). Time-varying distributed delays and their use in models of large systems. IEEE Trans. Systems Man Cybernetics SMC-6, 547–553.Google Scholar
  18. Manetsch, T. J. (1980). Bilateral distributed delays and their use in modeling classes of distributed parameter processes. IEEE Trans. Systems Man Cybernetics SMC-10, 61–67.Google Scholar
  19. McKendrick, A. G. (1926). The application of mathematics to medical problems. Proc. Edinb. Math. Soc. 44, 98–130.CrossRefGoogle Scholar
  20. Murray, J. D. (1989). Mathematical Biology, Heidelberg: Springer-Verlag.MATHGoogle Scholar
  21. Oster, G. and Y. Takahashi (1974). Models for age-specific interactions in a periodic environment. Ecol. Monog. 44, 483–501.CrossRefGoogle Scholar
  22. Plant, R. E. and L. T. Wilson (1986). Models for age structured populationswith distributed maturation rates. J. Math. Biol. 23, 247–262.MathSciNetCrossRefMATHGoogle Scholar
  23. Powell, J. A., J. Jenkins, J. A. Logan and B. J. Bentz (2000). Seasonal temperature alone can synchronize life cycles. Bull. Math. Biol. 62, 977–998.CrossRefGoogle Scholar
  24. Safranyik, L. (1978). Effects of climate and weather on mountain pine beetle populations, in Symposium Proceedings, Theory and Practice of Mountain Pine Beetle Management in Lodgepole Pine Forests, 25027 April 1978, A. A. Berryman, G. D. Amman and R. W. Stark (Eds), University of Idaho Forest, Wildlife and Range Experiment Station, Moscow, ID, pp. 77–84.Google Scholar
  25. Sharpe, P. J. H. and D. W. DeMichele (1977). Reaction kinetics of poikilotherm development. J. Theor. Biol. 64, 649–670.CrossRefGoogle Scholar
  26. Sharpe, P. J. H., G. L. Curry, D. W. DeMichele and C. L. Cole (1977). Distribution model of organism development times. J. Theor. Biol. 66, 21–38.CrossRefGoogle Scholar
  27. Slobodkin, L. B. (1953). An algebra of population growth. Ecology 34, 513–519.CrossRefGoogle Scholar
  28. Vansickle, J. (1977). Attrition in distributed delay models. IEEE Trans. Systems Man Cybernetics 7, 635–638.MathSciNetCrossRefGoogle Scholar
  29. von Foerster, H. (1959). The Kinetics of Cellular Proliferation, F. Stohmann Jr (Ed.), New York: Grune and Stratton, pp. 382–407.Google Scholar
  30. Werner, P. A. and H. Caswell (1977). Population growth rates and age versus stage-distribution models for teasel (Dipsacus sylvestris Huds.). Ecology 58, 1103–1111.CrossRefGoogle Scholar
  31. Zaslavski, V. A. (1988). Insect Development: Photoperiodic and Temperature Control, Berlin: Springer.Google Scholar

Copyright information

© Society for Mathematical Biology 2004

Authors and Affiliations

  • Estella Gilbert
    • 1
  • James A. Powell
    • 1
  • Jesse A. Logan
    • 2
  • Barbara J. Bentz
    • 2
  1. 1.Department of Mathematics and StatisticsUtah State UniversityLoganUSA
  2. 2.USDA Forest Service Logan Forestry Sciences LabUtah State UniversityLoganUSA

Personalised recommendations