Bulletin of Mathematical Biology

, Volume 66, Issue 6, pp 1705–1730 | Cite as

Mathematical aspects of protein structure determination with NMR orientational restraints

  • J. R. Quine
  • Timothy A. Cross
  • Michael S. Chapman
  • Richard Bertram
Article

Abstract

The field of structural biology is becoming increasingly important as new technological developments facilitate the collection of data on the atomic structures of proteins and nucleic acids. The solid-state NMR method is a relatively new biophysical technique that holds particular promise for determining the structures of peptides and proteins that are located within the cell membrane. This method provides information on the orientation of the peptide planes relative to an external magnetic field. In this article, we discuss some of the mathematical methods and tools that are useful in deriving the atomic structure from these orientational data. We first discuss how the data are viewed as tensors, and how these tensors can be used to construct an initial atomic model, assuming ideal stereochemistry. We then discuss methods for refining the models using global optimization, with stereochemistry constraints treated as penalty functions. These two processes, initial model building followed by refinement, are the two crucial steps between data collection and the final atomic model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anfinsen, C. B. (1973). Principles that govern the folding of protein chains. Science 181, 223–230.Google Scholar
  2. Bertram, R., T. Asbury, F. Fabiola, J. R. Quine, T. A. Cross and M. S. Chapman (2003). Atomic refinement with correlated solid-state NMR restraints. J. Magn. Reson. 163, 300–309.CrossRefGoogle Scholar
  3. Bertram, R., J. R. Quine, M. S. Chapman and T. A. Cross (2000). Atomic refinement using orientational restraints from solid-state NMR. J. Magn. Reson. 147, 9–16.CrossRefGoogle Scholar
  4. Brender, J. R., D. M. Taylor and A. Ramamoorthy (2001). Orientation of amide-nitrogen-15 chemical shift tensors in peptides: a quantum mechanical study. J. Am. Chem. Soc. 123, 914–922.CrossRefGoogle Scholar
  5. Brenneman, M. T. and T. A. Cross (1990). A method for the analytic determination of polypeptide structure using solid-state nuclear magnetic resonance: the metric method. J. Chem. Phys. 92, 1483–1494.CrossRefGoogle Scholar
  6. Brooks, B. R., R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan and M. Karplus (1983). CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217.CrossRefGoogle Scholar
  7. Brünger, A. T. (1992a). Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475.CrossRefGoogle Scholar
  8. Brünger, A. T. (1992b). X-Plor Version 3.1, A System for Crystallography and NMR, New Haven, CT: Yale University Press.Google Scholar
  9. Brünger, A. T. et al. (1998). Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta. Crystallogr. D 54, 905–921.CrossRefGoogle Scholar
  10. Brünger, A. T. and L. M. Rice (1997). Crystallographic refinement by simulated annealing: methods and applications. Methods Enzymol. 277, 243–269.Google Scholar
  11. Clore, G. M., A. M. Gronenborn and N. Tjandra (1998). Direct structure refinement against residual dipolar couplings in the presence of rhombicity of unknown magnitude. J. Magn. Reson. 131, 159–162.CrossRefGoogle Scholar
  12. Cross, T. A. and J. R. Quine (2000). Protein structure in anisotropic environments: development of orientational constraints. Concepts Magn. Reson. 12, 55–70.CrossRefGoogle Scholar
  13. Denny, J. K., J. Wang, T. A. Cross and J. R. Quine (2001). PISEMA powder patterns and PISA wheels. J. Magn. Reson. 152, 217–226.CrossRefGoogle Scholar
  14. Diamond, R. (1971). A real-space refinement procedure for proteins. Acta Crystallogr. A 27, 436–452.CrossRefGoogle Scholar
  15. Evans, J. N. S. (1995). Biomolecular NMR Spectroscopy, New York: Oxford University Press.Google Scholar
  16. Havel, T. F. and A. W. M. Dress (1993). Distance geometry and geometric algebra. Found. Phys. 23, 1357–1374.MathSciNetCrossRefGoogle Scholar
  17. Hendrickson, W. A. (1985). Stereochemically restrained refinement of macromolecular structures. Methods Enzymol. 115, 252–270.CrossRefGoogle Scholar
  18. Ketchem, R. R., B. Roux and T. A. Cross (1997). High-resolution polypeptide structure in a lamellar phase lipid environment from solid state NMR derived orientational constraints. Structure 5, 1655–1669.CrossRefGoogle Scholar
  19. Kirkpatrick, S., C. D. Gelatt Jr and M. P. Vecchi (1983). Optimization by simulated annealing. Science 220, 671–680.MathSciNetGoogle Scholar
  20. Lee, D.-K., Y. Wei and A. Ramamoorthy (2001). A two-dimensional magic-angle decoupling and magic-angle turning solid-state NMR method: an application to study chemical shift tensors from peptides that are nonselectively labeled with 15N isotope. J. Phys. Chem. B 105, 4752–4762.CrossRefGoogle Scholar
  21. MacKerell, A. D. Jr et al. (1998). All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. 102, 3586–3616.Google Scholar
  22. Mai, W., W. Hu, C. Wang and T. A. Cross (1993). Orientational constraints as three-dimensional structural constraints from chemical shift anisotropy: the polypeptide backbone of gramicidin A in a lipid bilayer. Protein Sci. 2, 532–542.CrossRefGoogle Scholar
  23. Marassi, F. M. and S. J. Opella (2000). A solid-state NMR index of helical membrane protein structure and topology. J. Magn. Reson. 144, 150–155.CrossRefGoogle Scholar
  24. Mascioni, A. and G. Veglia (2003). Theoretical analysis of residual dipolar coupling patterns in regular secondary structures of proteins. J. Am. Chem. Soc. 41, 12520–12526.Google Scholar
  25. Mazur, A. K. and R. A. Abagyan (1989). New methodology for computer-aided modelling of biomolecular structure and dynamics. (I) Non-cyclic structures. J. Biomol. Struct. Dynam. 4, 815–832.Google Scholar
  26. Mesleh, M. F. and S. J. Opella (2003). Dipolar waves as NMR maps of helices in proteins. J. Magn. Reson. 163, 288–299.CrossRefGoogle Scholar
  27. Oas, T. G., C. J. Hartzell, F. W. Dahlquist and G. P. Drobny (1987). The amide 15N chemical shift tensors of four peptides determined from 13C dipole-coupled chemical shift powder patterns. J. Am. Chem. Soc. 109, 5962–5966.CrossRefGoogle Scholar
  28. Prestegard, J. H., J. R. Tolman, H. M. Al-Hashimi and M. Andrec (1999). Protein structure and dynamics from field-induced residual dipolar couplings, in Biological Magnetic Resonance, Volume 17: Structure and Dynamics in Protein NMR, Krishna and Berliner (Eds), New York: Plenum Publishers, pp. 311–355.Google Scholar
  29. Quine, J. R. (1999). Helix parameters and protein structures using quaternions. Theochem 460, 53–66.CrossRefGoogle Scholar
  30. Quine, J. R. and T. A. Cross (2000). Protein structure in anisotropic environments: unique structural fold from orientational constraints. Concepts Magn. Reson. 12, 71–82.CrossRefGoogle Scholar
  31. Ramamoorthy, A., F. Marassi, M. Zasloff and S. J. Opella (1995). Three-dimensional solid-state NMR spectroscopy of a peptide oriented in membrane bilayers. J. Biol. NMR 6, 329–334.Google Scholar
  32. Ramamoorthy, A. and S. J. Opella (1995). Two-dimensional chemical shift/heteronuclear dipolar coupling spectra obtained with polarization inversion spin exchange at the magic angle and magic-angle sample spinning (PISEMAMAS). Solid State NMR 4, 387–392.CrossRefGoogle Scholar
  33. Ramamoorthy, A., C. H. Wu and S. J. Opella (1999). Experimental aspects of multidimensional solid-state NMR correlation spectroscopy. J. Magn. Reson. 140, 131–140.CrossRefGoogle Scholar
  34. Rice, L. M. and A. T. Brünger (1994). Torsion angle dynamics: Reduced variable conformational sampling enhances crystallographic structure refinement. Proteins: Struct. Funct. Genetics 19, 277–290.CrossRefGoogle Scholar
  35. Teng, Q., M. Iqbal and T. A. Cross (1992). Determination of the 13C chemical shift and 14N electric field gradient tensor orientations with respect to the molecular frame in a polypeptide. J. Am. Chem. Soc. 114, 5312–5321.CrossRefGoogle Scholar
  36. Tian, F., Z. Song and T. A. Cross (1998). Orientational constraints derived from hydrated powder samples by two-dimensional PISEMA. J. Magn. Reson. 135, 227–231.CrossRefGoogle Scholar
  37. Tjandra, N., J. Marquardt and G. M. Clore (2000). Direct refinement against proton-proton dipolar couplings in NMR structure determination of macro-molecules. J. Magn. Reson. 142, 393–396.CrossRefGoogle Scholar
  38. Vaidehi, N. and W. A. Goddard III (2001). Atomic-level simulation and modeling of biomacromolecules, in Computational Modeling of Genetic and Biochemical Networks, J. M. Bower and H. Bolouri (Eds), Cambridge, MA: MIT Press, pp. 161–188.Google Scholar
  39. Wallin, P. J. and G. Von Heijne (1998). Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 7, 1029–1038.CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2004

Authors and Affiliations

  • J. R. Quine
    • 1
    • 2
    • 4
  • Timothy A. Cross
    • 2
    • 3
    • 4
  • Michael S. Chapman
    • 3
    • 4
  • Richard Bertram
    • 1
    • 4
  1. 1.Department of MathematicsFlorida State UniversityTallahasseeUSA
  2. 2.National High Magnetic Field LaboratoryFlorida State UniversityTallahasseeUSA
  3. 3.Department of ChemistryFlorida State UniversityTallahasseeUSA
  4. 4.Kasha Laboratory of BiophysicsFlorida State UniversityTallahasseeUSA

Personalised recommendations