# Coexistence of multiple pathogen strains in stochastic epidemic models with density-dependent mortality

- 357 Downloads
- 19 Citations

## Abstract

Stochastic differential equations that model an SIS epidemic with multiple pathogen strains are derived from a system of ordinary differential equations. The stochastic model assumes there is demographic variability. The dynamics of the deterministic model are summarized. Then the dynamics of the stochastic model are compared to the deterministic model. In the deterministic model, there can be either disease extinction, competitive exclusion, where only one strain persists, or coexistence, where more than one strain persists. In the stochastic model, all strains are eventually eliminated because the disease-free state is an absorbing state. However, if the population size and the initial number of infected individuals are sufficiently large, it may take a long time until all strains are eliminated. Numerical simulations of the stochastic model show that coexistence cases predicted by the deterministic model are an unlikely occurrence in the stochastic model even for short time periods. In the stochastic model, either disease extinction or competitive exclusion occur. The initial number of infected individuals, the basic reproduction numbers, and other epidemiological parameters are important determinants of the dominant strain in the stochastic epidemic model.

## Keywords

Stochastic Differential Equation Deterministic Model Sample Path Epidemic Model Competitive Exclusion## Preview

Unable to display preview. Download preview PDF.

## References

- Ackleh, A. S. and L. J. S. Allen (2003a). Competitive exclusion and coexistence for pathogens in an epidemic model with variable population size.
*J. Math. Biol.***47**, 153–168.MathSciNetCrossRefGoogle Scholar - Ackleh, A. S. and L. J. S. Allen (2003b). Competitive exclusion in SIS and SIR epidemic models with total cross immunity and density-dependent host mortality (submitted for publication).Google Scholar
- Allen, E. J. (1999). Stochastic differential equations and persistence time for two interacting populations.
*Dyn. Cont., Discrete Impulsive Syst.***5**, 271–281.zbMATHGoogle Scholar - Allen, L. J. S. (2003).
*An Introduction to Stochastic Processes with Applications to Biology*, Upper Saddle River, NJ: Prentice-Hall.Google Scholar - Allen, L. J. S. and E. J. Allen (2003). A comparison of three different stochastic population models with regard to persistence time.
*Theor. Popul. Biol.***64**, 439–449.CrossRefGoogle Scholar - Allen, L. J. S. and A. M. Burgin (2000). Comparison of deterministic and stochastic SIS and SIR models in discrete time.
*Math. Biosci.***163**, 1–31.MathSciNetCrossRefGoogle Scholar - Allen, L. J. S., M. Langlais and C. J. Phillips (2003). The dynamics of two viral infections in a single host population with applications to hantavirus.
*Math. Biosci.***186**, 191–217.MathSciNetCrossRefGoogle Scholar - Andreasen, V., J. Lin and S. A. Levin (1997). The dynamics of cocirculating influenza strains conferring partial cross-immunity.
*J. Math. Biol.***35**, 825–842.MathSciNetCrossRefGoogle Scholar - Andreasen, V. and A. Pugliese (1995). Pathogen coexistence induced by density dependent host mortality.
*J. Theor. Biol.***177**, 159–165.Google Scholar - Arrigoni, F. and A. Pugliese (2002). Limits of a multi-patch SIS epidemic model.
*J. Math. Biol.***45**, 419–440.MathSciNetCrossRefGoogle Scholar - Bailey, N. T. J. (1975).
*The Mathematical Theory of Infectious Diseases and its Applications*, London: Charles Griffin.Google Scholar - Bailey, N. T. J. (1990).
*The Elements of Stochastic Processes with Applications to the Natural Sciences*, New York: John Wiley & Sons.Google Scholar - Ball, F. G. (1999). Stochastic and deterministic models for SIS epidemics among a population partitioned into households.
*Math. Biosci.***156**, 41–67.zbMATHMathSciNetCrossRefGoogle Scholar - Ball, F. G. and P. D. O’Neill (1999). The distribution of general final state random variables for stochastic epidemic models.
*J. Appl. Prob.***36**, 473–491.MathSciNetCrossRefGoogle Scholar - Bartlett, M. S. (1960).
*Stochastic Population Models in Ecology and Epidemiology*, New York and London: John Wiley.Google Scholar - Bremermann, H. J. and H. R. Thieme (1989). A competitive exclusion principle for pathogen virulence.
*J. Math. Biol.***27**, 179–190.MathSciNetGoogle Scholar - Castillo-Chavez, C., W. Huang and J. Li (1996). Competitive exclusion in gonorrhea models and other sexually transmitted diseases.
*SIAM J. Appl. Math.***56**, 494–508.MathSciNetCrossRefGoogle Scholar - Castillo-Chavez, C., W. Huang and J. Li (1999). Competitive exclusion and coexistence of multiple strains in an SIS STD model.
*SIAM J. Appl. Math.***59**, 1790–1811.MathSciNetCrossRefGoogle Scholar - Castillo-Chavez, C. and J. X. Velasco-Hernández (1998). On the relationship between evolution of virulence and host demography.
*J. Theor. Biol.***192**, 437–444.CrossRefGoogle Scholar - Chan, M.-S., F. Mutapi, M. E. J. Woolhouse and V. S. Isham (2000). Stochastic simulation and the detection of immunity to helminth infections.
*Parasitology***120**, 161–169.CrossRefGoogle Scholar - Daley, D. J. and J. Gani (1999).
*Epidemic Modelling: An Introduction*, Cambridge Studies in Mathematical Biology, Cambridge: Cambridge University Press.Google Scholar - Dawes, J. H. P. and J. R. Gog (2002). The onset of oscillatory dynamics in models of multiple disease strains.
*J. Math. Biol.***45**, 471–510.MathSciNetCrossRefGoogle Scholar - Esteva, L. and C. Vargas (2003). Coexistence of different serotypes of dengue virus.
*J. Math. Biol.***46**, 31–47.MathSciNetCrossRefGoogle Scholar - Feng, Z. and J. X. Velasco-Hernández (1997). Competitive exclusion in a vector-host model for the dengue fever.
*J. Math. Biol.***35**, 523–544.MathSciNetCrossRefGoogle Scholar - Ferguson, N. M., A. P. Galvani and R. M. Bush (2003). Ecological and immunological determinants of influenza evolution.
*Nature***422**, 428–433.CrossRefGoogle Scholar - Finkenstadt, B. F., O. N. Bjornstad and B. T. Grenfell (2002). A stochastic model for extinction and recurrence of epidemics: estimation and inference for measles outbreaks.
*Biostatistics***3**,**4**, 493–510.CrossRefGoogle Scholar - Gabriel, J.-P., C. Lefèvre and P. Picard (Eds), (1990).
*Stochastic Processes in Epidemic Theory*, Lecture Notes in Biomathematics, New York: Springer-Verlag.Google Scholar - Gard, T. C. (1988).
*Introduction to Stochastic Differential Equations*, NewYork and Basel: Marcel Dekker, Inc.Google Scholar - Gupta, S., K. Trenholme, R. M. Anderson and K. P. Day (1994). Antigenic diversity and the transmission dynamics of
*Plasmodium falciparum*.*Science***263**, 961–963.Google Scholar - Herbert, J. and V. S. Isham (2000). On stochastic host-parasite interaction models.
*J. Math. Biol.***40**, 343–371.CrossRefGoogle Scholar - Hernandez-Suarez, C. M. (2002). A Markov Chain approach to calculate
*R*_{0}in stochastic epidemic models.*J. Theor. Biol.***215**, 83–93.MathSciNetCrossRefGoogle Scholar - Hochberg, M. E. and R. D. Holt (1990). The coexistence of competing parasites I. The role of cross species infection.
*Am. Nat.***136**, 517–541.CrossRefGoogle Scholar - Isham, V. and M.-S. Chan (1998). A stochastic model of schistosomiasis immunoepidemiology.
*Math. Biosci.***151**, 179–198.CrossRefGoogle Scholar - Isham, V. and G. Medley (Eds), (1996).
*Models for Infectious Human Diseases: Their Structure and Relation to Data*, Cambridge: Cambridge University Press.Google Scholar - Jacquez, J. A. and C. P. Simon (1993). The stochastic SI model with recruitment and deaths I. comparison with the closed SIS model.
*Math. Biosci.***117**, 77–125.MathSciNetCrossRefGoogle Scholar - Karlin, S. and H. Taylor (1981).
*A Second Course in Stochastic Processes*, New York: Academic Press.Google Scholar - Keeling, M. J., M. E. J. Woolhouse, D. J. Shaw, L. Matthews, M. Chase-Topping, D. T. Haydon, S. J. Cornell, J. Kappey, J. Wilesmith and B. T. Grenfell (2001). Dynamics of the 2001 UK foot and mouth epidemic: stochastic dispersal in a heterogeneous landscape.
*Science***294**, 813–817.CrossRefGoogle Scholar - Kirupaharan, N. (2003). Deterministic and stochastic epidemic models with multiple pathogens, PhD Thesis, Texas Tech University, Lubbock, TX, USA.Google Scholar
- Kloeden, P. E. and E. Platen (1992).
*Numerical Solution of Stochastic Differential Equations*, New York: Springer.Google Scholar - Kloeden, P. E., E. Platen and H. Schurz (1997).
*Numerical Solution of Stochastic Differential Equations through Computer Experiments*, Berlin: Springer.Google Scholar - Levin, S. A. (1970). Community equilibria and stability, and an extension of the competitive exclusion principle.
*Am. Nat.***104**, 413–423.CrossRefGoogle Scholar - Matis, J. H. and T. R. Kiffe (2000).
*Stochastic Population Models*, New York: Springer.Google Scholar - May, R. M. and M. A. Nowak (1994). Superinfection, metapopulation dynamics, and the evolution of virulence.
*J. Theor. Biol.***170**, 95–114.CrossRefGoogle Scholar - May, R. M. and M. A. Nowak (1995). Coinfection and the evolution of parasite virulence.
*Proc. R. Soc. Lond. B***261**, 209–215.Google Scholar - Mena-Lorca, J., J. Velasco-Hernández and C. Castillo-Chavez (1999). Density-dependent dynamics and superinfection in an epidemic model.
*IMA J. Math. Appl. Med. Biol.***16**, 307–317.Google Scholar - Mollison, D. (1995).
*Epidemic Models Their Structure and Relation to Data*, Cambridge: Cambridge University Press.Google Scholar - Mosquera, J. and F. R. Adler (1998). Evolution of virulence: a unified framework for coinfection and superinfection.
*J. Theor. Biol.***195**, 293–313.CrossRefGoogle Scholar - Nåsell, I. (1996). The quasi-stationary distribution of the closed endemic SIS model.
*Adv. Appl. Prob.***28**, 895–932.zbMATHCrossRefGoogle Scholar - Nåasell, I. (1999). On the quasi-stationary distribution of the stochastic logistic epidemic.
*Math. Biosci.***156**, 21–40.MathSciNetCrossRefGoogle Scholar - Nåsell, I. (2002). Endemicity, persistence, and quasi-stationarity, in
*Mathematical Approaches for Emerging and Reemerging Infectious Diseases An Introduction*, C. Castillo-Chavez, S. Blower, P. van den Driessche, D. Kirschner and A.-A. Yakubu (Eds), New York: Springer, pp. 199–227.Google Scholar - Nowak, M. A. and R. M. May (1994). Superinfection and the evolution of parasite virulence.
*Proc. R. Soc. Lond. B***255**, 81–89.Google Scholar - Ortega, J. M. (1987).
*Matrix Theory*, New York and London: Plenum Press.Google Scholar - Pugliese, A. (2002). On the evolutionary coexistence of parasite strains.
*Math. Biosci.***177**,**178**, 355–375.zbMATHMathSciNetCrossRefGoogle Scholar - Renshaw, E. (1993).
*Modelling Biological Populations in Space and Time*, Cambridge: Cambridge University Press.Google Scholar - Rohani, P., M. J. Keeling and B. T. Grenfell (2002). The interplay between determinism and stochasticity in childhood diseases.
*Am. Nat.***159**, 469–481.CrossRefGoogle Scholar - Swinton, J. (1998). Extinction times and phase transitions for spatially structured closed epidemics.
*Bull. Math. Biol.***60**, 215–230.zbMATHCrossRefGoogle Scholar - Taylor, H. M. and S. Karlin (1998).
*An Introduction to Stochastic Modeling*, 3rd edn, New York: Academic Press.Google Scholar