A history of the study of solid tumour growth: The contribution of mathematical modelling Article Received: 15 September 2003 Accepted: 06 November 2003
Abstract A miscellany of new strategies, experimental techniques and theoretical approaches are emerging in the ongoing battle against cancer. Nevertheless, as new, ground-breaking discoveries relating to many and diverse areas of cancer research are made, scientists often have recourse to mathematical modelling in order to elucidate and interpret these experimental findings. Indeed, experimentalists and clinicians alike are becoming increasingly aware of the possibilities afforded by mathematical modelling, recognising that current medical techniques and experimental approaches are often unable to distinguish between various possible mechanisms underlying important aspects of tumour development.

This short treatise presents a concise history of the study of solid tumour growth, illustrating the development of mathematical approaches from the early decades of the twentieth century to the present time. Most importantly these mathematical investigations are interwoven with the associated experimental work, showing the crucial relationship between experimental and theoretical approaches, which together have moulded our understanding of tumour growth and contributed to current anti-cancer treatments.

Thus, a selection of mathematical publications, including the influential theoretical studies by Burton, Greenspan, Liotta et al. , McElwain and co-workers, Adam and Maggelakis, and Byrne and co-workers are juxtaposed with the seminal experimental findings of Gray et al. on oxygenation and radio-sensitivity, Folkman on angiogenesis, Dorie et al. on cell migration and a wide variety of other crucial discoveries. In this way the development of this field of research through the interactions of these different approaches is illuminated, demonstrating the origins of our current understanding of the disease.

References Abercrombie, M. (1970). Contact inhibition in tissue culture.

In vitro
6 , 128–140.

Google Scholar Adam, J. A. (1986). A simplified mathematical model of tumor growth.

Math. Biosci.
81 , 229–244.

MATH CrossRef Google Scholar Adam, J. A. (1987a). A mathematical model of tumor growth. ii. Effects of geometry and spatial uniformity on stability.

Math. Biosci.
86 , 183–211.

MATH CrossRef Google Scholar Adam, J. A. (1987b). A mathematical model of tumor growth. iii. Comparison with experiment.

Math. Biosci.
86 , 213–227.

MATH CrossRef Google Scholar Adam, J. A. (1989). Corrigendum: a mathematical model of tumor growth by diffusion.

Math. Biosci.
94 , 155.

MathSciNet CrossRef Google Scholar Adam, J. A. and N. Bellomo (1997).

A Survey of Models for Tumor-Immune System Dynamics , Boston: Birkhauser.

MATH Google Scholar Adam, J. A. and S. A. Maggelakis (1989). Mathematical models of tumor growth. iv. Effects of a necrotic core.

Math. Biosci.
97 , 121–136.

CrossRef MATH Google Scholar Adam, J. A. and S. A. Maggelakis (1990). Diffusion regulated characteristics of a spherical prevascular carcinoma.

Bull. Math. Biol.
52 , 549–582.

CrossRef MATH Google Scholar Adam, J. A. and R. D. Noren (2002). Equilibrium model of a vascularized spherical carcinoma.

J. Math. Biol.
31 , 735–745.

MathSciNet CrossRef Google Scholar Adam, J. A. and J. C. Panetta (1995). A simple mathematical model and alternative paradigm for certain chemotherapeutic regimens.

Math. Comput. Modelling
22 , 49–60.

MathSciNet CrossRef MATH Google Scholar Alberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts and P. Walter (2002).

Molecular Biology of the Cell , 4th edn, New York: Garland Science.

Google Scholar Ambrosi, D. and F. Mollica (2002). On the mechanics of a growing tumor.

Int. J. Eng. Sci.
40 , 1297–1316.

MathSciNet CrossRef Google Scholar Ambrosi, D. and F. Mollica (2003). Numerical simulation of the growth of a multicellular spheroid, in

Second M.I.T. Conference on Computational Fluid and Solid Mechanics , UK: Elsevier Ltd, pp. 1608–1612.

Google Scholar Ambrosi, D. and L. Preziosi. On the closure of mass balance models for tumour growth.

Math. Models Methods Appl. Sci. (in press).

Google Scholar Anderson, A. R. A. and M. A. J. Chaplain (1998). Continuous and discrete mathematical models of tumour-induced angiogenesis.

Bull. Math. Biol.
60 , 857–899.

CrossRef MATH Google Scholar Anderson, A. R. A., M. A. J. Chaplain, R. J. Steele, E. L. Newman and A. Thompson (2000). Mathematical modelling of tumour invasion and metastasis.

J. Theor. Med.
2 , 129–154.

MATH Google Scholar Araujo, R. P. and D. L. S. McElwain. A linear-elastic model of anisotropic tumour growth.

Eur. J. Appl. Math. (in press-a).

Google Scholar Araujo, R. P. and D. L. S. McElwain. The nature of the stresses induced during tissue growth.

Appl. Math. Lett. (in press-b).

Google Scholar Araujo, R. P. and D. L. S. McElwain. A mixture theory for the genesis of residual stresses in growing tissues.

SIAM J. Appl. Math. (submitted-a).

Google Scholar Araujo, R. P. and D. L. S. McElwain. New insights into vascular collapse and growth dynamics in solid tumours.

J. Theor. Biol. (submitted-b).

Google Scholar Araujo, R. P. and D. L. S. McElwain (2003a). An anisotropic model of vascular tumor growth: implications for vascular collapse, in

Second M.I.T. Conference on Computational Fluid and Solid Mechanics , Oxford, UK: Elsevier Ltd, pp. 1613–1616.

Google Scholar Araujo, R. P. and D. L. S. McElwain (2003b). The genesis of residual stresses and vascular collapse in solid tumours, in

Proceedings of the Sixth Engineering Mathematics and Applications Conference , Engineering Mathematics Group, ANZIAM, pp. 1–6.

Google Scholar Arve, B. H. and A. I. Liapis (1988). Oxygen tension in tumors predicted by a diffusion with absorption model involving a moving free boundary.

Math. Comput. Modelling
10 , 159–174.

CrossRef MATH Google Scholar Australian Institute of Health and Welfare (AIHM). Cancer in Australia 1999. Available from

http://www.aihw.gov.au/publications/can/ca99/ .

Aznavoorian, S., M. L. Stracke, H. Krutzsch, E. Schiffman and L. A. Liotta (1990). Signal transduction for chemotaxis and haptotaxis by matrix molecules in tumour cells.

J. Cell Biol.
110 , 1427–1438.

CrossRef Google Scholar Barr, L. C. (1989). The encapsulation of tumours.

Clin. Exp. Metastasis
7 , 1813–1816.

CrossRef Google Scholar Barr, L. C., R. L. Carter and A. J. S. Davies (1988). Encapsulation of tumours as a modified wound healing response.

Lancet
ii , 135–137.

CrossRef Google Scholar Baxter, L. T. and R. K. Jain (1989). Transport of fluid and macromolecules in tumors: I. Role of interstitial pressure and convection.

Microvasc. Res.
37 , 77–104.

CrossRef Google Scholar Baxter, L. T. and R. K. Jain (1990). Transport of fluid and macromolecules in tumors: Ii. Role of heterogeneous perfusion and lymphatics.

Microvasc. Res.
40 , 246–263.

CrossRef Google Scholar Baxter, L. T. and R. K. Jain (1991). Transport of fluid and macromolecules in tumors: Iv. A microscopic model of the perivascular distribution.

Microvasc. Res.
41 , 252–272.

CrossRef Google Scholar Baxter, L. T. and R. K. Jain (1996). Pharmacokinetic analysis of microscopic distribution of enzyme-conjugated antibodies and prodrugs: comparison with experimental data.

Br. J. Cancer
73 , 447–456.

Google Scholar Berenblum, L. (1970). The nature of tumour growth, in

General Pathology , 4th edn, H. E. W. Florey (Ed.), Lloyd-Luke.

Google Scholar Bertuzzi, A., A. Fasano and A. Gandolfi (2003). Cell kinetics in tumour cords studied by a model with variable cell cycle length, in

Second M.I.T. Conference on Computational Fluid and Solid Mechanics , pp. 1631–1633.

Google Scholar Bertuzzi, A., A. Fasano, A. Gandolfi and D. Marangi (2002). Cell kinetics in tumour cords studied by a model with variable cell cycle length.

Math. Biosci.
177 & 178 , 103–125.

MathSciNet CrossRef Google Scholar Bertuzzi, A. and A. Gandolfi (2000). Cell kinetics in a tumour cord.

J. Theor. Biol.
204 , 587–599.

CrossRef Google Scholar Boucher, Y. and R. K. Jain (1992). Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse.

Cancer Res.
52 , 5110–5114.

Google Scholar Boucher, Y., J. M. Kirkwoord, D. Opacic, M. Desantis and R. K. Jain (1991). Interstitial hypertension in superficial metastatic melanomas in humans.

Cancer Res.
51 , 6691–6694.

Google Scholar Boucher, Y., M. Leunig and R. K. Jain (1996). Tumor angiogenesis and interstitial hypertension.

Cancer Res.
56 , 4264–4266.

Google Scholar Bowen, R. M. (1982). Compressible porous mediamodels by use of the theory of mixtures.

Int. J. Eng. Sci.
20 , 697–735.

MATH CrossRef Google Scholar Bowen, R. M. (1976). Theory of mixtures, in

Continuum Physics , A. C. Eringen (Ed.), vol. 3, New York: Academic Press.

Google Scholar Bowen, R. M. (1980). Incompressible porous media models by use of the theory of mixtures.

Int. J. Eng. Sci.
18 , 1129–1148.

MATH CrossRef Google Scholar Bowen, R. M. and J. C. Wiese (1969). Diffusion in mixtures of elastic materials.

Int. J. Eng. Sci.
7 , 689–722.

CrossRef MATH Google Scholar Breward, C. J. W., H. M. Byrne and C. E. Lewis (2002). The role of cell-cell interactions in a two-phase model for avascular tumour growth.

J. Math. Biol.
45 , 125–152.

MathSciNet CrossRef MATH Google Scholar Breward, C. J. W., H. M. Byrne and C. E. Lewis (2003). A multiphase model describing vascular tumour growth.

Bull. Math. Biol.
65 , 609–640.

CrossRef Google Scholar Britton, N. F. and M. A. J. Chaplain (1992). A qualitative analysis of some models of tissue growth.

Math. Biosci.
113 , 77–89.

CrossRef Google Scholar Brody, S. (1945).

Bioenergetics and Growth , New York: Reinhold Publ. Co.

Google Scholar Brown, N. J., C. A. Staton, G. R. Rodgers, K. P. Corke, J. C. E. Underwood and C. E. Lewis (2002). Fibrinogen e fragment selectively disrupts the vasculature and inhibits the growth of tumours in a syngeneic murine model.

Br. J. Cancer
86 , 1813–1816.

CrossRef Google Scholar Bullough, W. S. (1965). Mitotic and functional homeostasis: a speculative review.

Cancer Res.
25 , 1683–1727.

Google Scholar Bullough, W. S. and J. U. R. Deol (1971). The pattern of tumour growth.

Symp. Soc. Exp. Biol.
25 , 255–275.

Google Scholar Burton, A. C. (1966). Rate of growth of solid tumours as a problem of diffusion.

Growth
30 , 157–176.

Google Scholar Byrne, H. B., J. R. King, D. L. S. McElwain and L. Preziosi. A two-phase model of solid tumour growth.

Appl. Math. Lett. (in press).

Google Scholar Byrne, H. M. (1997a). The effect of time delays on the dynamics of avascular tumour growth.

Math. Biosci.
144 , 83–117.

MATH MathSciNet CrossRef Google Scholar Byrne, H. M. (1997b). The importance of intercellular adhesion in the development of carcinomas.

IMA J. Math. Appl. Med. Biol.
14 , 305–323.

MATH Google Scholar Byrne, H. M. (1999a). Using mathematics to study solid tumour growth, in

Proceedings of the 9th General Meetings of European Women in Mathematics , pp. 81–107.

Google Scholar Byrne, H. M. (1999b). A weakly nonlinear analysis of a model of avascular solid tumour growth.

J. Math. Biol.
39 , 59–89.

MATH MathSciNet CrossRef Google Scholar Byrne, H. M. and M. A. J. Chaplain (1995). Growth of nonnecrotic tumours in the presence and absence of inhibitors.

Math. Biosci.
130 , 151–181.

CrossRef MATH Google Scholar Byrne, H. M. and M. A. J. Chaplain (1996a). Growth of necrotic tumours in the presence and absence of inhibitors.

Math. Biosci.
135 , 187–216.

CrossRef MATH Google Scholar Byrne, H. M. and M. A. J. Chaplain (1996b). Modelling the role of cell-cell adhesion in the growth and development of carcinomas.

Math. Comput. Modelling
24 , 1–17.

CrossRef MATH Google Scholar Byrne, H. M. and M. A. J. Chaplain (1997). Free boundary value problems associated with the growth and development of multicellular spheroids.

Eur. J. Appl. Math.
8 , 639–658.

MathSciNet CrossRef MATH Google Scholar Byrne, H. M. and M. A. J. Chaplain (1998). Necrosis and apoptosis: distinct cell loss mechanisms in a mathematical model of avascular tumour growth.

J. Theor. Med.
1 , 223–235.

MATH CrossRef Google Scholar Byrne, H. M. and S. A. Gourley (1997). The role of growth factors in avascular tumour growth.

Math. Comput. Modelling
4 , 35–55.

MathSciNet CrossRef Google Scholar Byrne, H. M. and L. Preziosi. Modelling solid tumor growth using the theory of mixtures.

IMA J. Appl. Math. Lett. (in press).

Google Scholar Casciari, J. J., S. V. Sotirchos and R. M. Sutherland (1984). Identification of a tumour inhibitory factor in rat ascites fluid.

Biochem. Biophys. Res. Comm.
119 , 76–82.

CrossRef Google Scholar Chance, B. (1957). Cellular oxygen requirements.

Fed. Proc.
16 , 671–680.

Google Scholar Chaplain, M. A. J. (1993). The development of a spatial pattern in a model for cancer growth, in

Experimental and Theoretical Advances in Biological Pattern Formation , H. G. Othmer

et al. (Eds), Plenum Press.

Google Scholar Chaplain, M. A. J. (1996). Avascular growth, angiogenesis and vascular growth in solid tumours: the mathematical modeling of the stages of tumour development.

Math. Comput. Modelling
23 , 47–87.

MATH CrossRef Google Scholar Chaplain, M. A. J., D. L. Benson and P. K. Maini (1994). Nonlinear diffusion of a growth inhibitory factor in multicell spheroids.

Math. Biosci.
121 , 1–13.

CrossRef MATH Google Scholar Chaplain, M. A. J. and N. F. Britton (1993). On the concentration profile of a growth inhibitory factor in multicell spheroids.

Math. Biosci.
115 , 233–245.

CrossRef MATH Google Scholar Chaplain, M. A. J. and L. Preziosi. Macroscopic modelling of the growth and development of tumor masses.

Math. Models Methods Appl. Sci. (in press).

Google Scholar Chaplain, M. A. J. and B. D. Sleeman (1993). Modelling the growth of solid tumours and incorporating a method for their classification using nonlinear elasticity theory.

J. Math. Biol.
31 , 431–473.

MathSciNet CrossRef MATH Google Scholar Chen, C. Y., H. M. Byrne and J. R. King (2001). The influence of growth-induced stress from the surrounding medium on the development of multicell spheroids.

J. Math. Biol.
43 , 191–220.

MathSciNet CrossRef MATH Google Scholar Chen, Y.-C. and A. Hoger (2000). Constitutive functions of elastic materials in finite growth and deformation.

J. Elasticity
59 , 175–193.

CrossRef MATH Google Scholar Clarke, R., R. G. Dickson and N. Brunner (1988). The process of malignant progression in human breast cancer.

Cancer Genet. Cytogenet.
14 , 125–134.

Google Scholar Cowin, S. C. (1996). Strain or deformation rate dependent finite growth in soft tissues.

J. Biomech.
29 , 647–649.

CrossRef Google Scholar Cramer, W. (1934). The prevention of cancer.

Lancet
1 , 15.

Google Scholar Cristini, V., J. Lowengrub and Q. Nie (2003). Nonlinear simulation of tumor growth.

J. Math. Biol.
46 , 191–224.

MathSciNet CrossRef MATH Google Scholar Cruveilier, (1829).

Anatomie Pathologique du Corps Humain , Paris: Bailliere.

Google Scholar Cui, S. (2002). Analysis of a mathematical model for the growth of tumors under the action of external inhibitors.

J. Math. Biol.
44 , 395–426.

MATH MathSciNet CrossRef Google Scholar Cui, S. and A. Friedman (2000). Analysis of a mathematical model of the effect of inhibitors on the growth of tumors.

Math. Biosci.
164 , 103–137.

MathSciNet CrossRef MATH Google Scholar Danova, M., A. Riccardi and G. Mazzini (1990). Cell cycle-related proteins and flow cytometry.

Haematologica
75 , 252–264.

Google Scholar Darzynkiewicz, Z. (1995). Apoptosis in antitumour strategies: modulation of cell-cycle or differentiation.

J. Cell. Biochem.
58 , 151–159.

CrossRef Google Scholar David, P. D.

et al. (2002). Zd6126: A novel vascular-targeting agent that causes selective destruction of tumor vasculature.

Cancer Res.
62 , 7247–7253.

Google Scholar De Angelis, E. and L. Preziosi (2000). Advection-diffusion models for solid tumour evolution in vivo and related free boundary problem.

Math. Models Methods Appl. Sci.
10 , 379–408.

MathSciNet CrossRef MATH Google Scholar Deakin, A. S. (1975). Model for the growth of a solid in vitro tumour.

Growth
39 , 159–165.

Google Scholar Dorie, M. J., R. F. Kallman, D. F. Rapacchietta, D. van Antwerp and Y. R. Huang (1982). Migration and internalization of cells and polystyrene microspheres in tumour cell spheroids.

Exp. Cell Res.
141 , 201–209.

CrossRef Google Scholar Dorie, M. J., R. F. Kallman and M. A. Coyne (1986). Effect of cytochalasin b, nocodazole and irradiation on migration and internalization of cells and microspheres in tumour cell spheroids.

Exp. Cell Res.
166 , 370–378.

CrossRef Google Scholar Drew, D. A. (1971). Averaged field equations for two-phase media.

Stud. Appl. Math.
50 , 205–231.

MATH Google Scholar Drew, D. A. (1976). Two-phase flows: constitutive equations for lift and Brownian motion and some basic flows.

Arch. Rat. Mech. Anal.
62 , 149–163.

MATH MathSciNet CrossRef Google Scholar Drew, D. A. and S. L. Passman (1999).

Theory of Multicomponent Fluids , New York: Springer.

Google Scholar Drew, D. A. and L. A. Segel (1971). Averaged equations for two-phase flows.

Stud. Appl. Math.
50 , 205–231.

MATH Google Scholar Durand, R. E. (1976). Cell cycle kinetics in an in vitro tumor model.

Cell Tissue Kinet.
9 , 403–412.

Google Scholar Eddy, H. A. and G. W. Casarett (1972). Development of the vascular system in the hamster malignant neurilemmoma.

Microvasc. Res.
6 , 63–82.

CrossRef Google Scholar Fisher, R. A. (1937). The wave of advance of advantageous genes.

Ann. Eugenics
7 , 355–369.

MATH Google Scholar Fitt, A. D., P. D. Howell, J. R. King, C. P. Please and D. W. Schwendeman (2002). Multiphase flow in a roll press nip.

Eur. J. Appl. Math.
13 , 225–259.

MathSciNet CrossRef MATH Google Scholar Folkman, J. (1974). Tumor angiogenesis.

Adv. Cancer Res.
19 , 331–358.

CrossRef Google Scholar Folkman, J., P. Cole and S. Zimmerman (1966). Tumor behavior in isolated perfused organs: in vitro growth and metastases of biopsy material in rabbit thyroid and canine intestinal segment.

Ann. Surg.
164 , 491–502.

Google Scholar Folkman, J. and M. Hochberg (1973). Self-regulation of growth in three dimensions.

J. Exp. Med.
138 , 745–753.

CrossRef Google Scholar Fowler, A. C. (1997).

Mathematical Models in the Applied Sciences , Cambridge University Press.

Google Scholar Franks, S. J., H. M. Byrne, J. R. King, J. C. E. Underwood and C. E. Lewis (2003). Modelling the early growth of ductal carcinoma in situ of the breast.

J. Math. Biol.
47 , 424–452.

MathSciNet CrossRef MATH Google Scholar Freyer, J. P., P. L. Schor and A. G. Saponara (1988). Partial purification of a protein-growth inhibitor from multicell spheroids.

Biochem. Biophys. Res. Comm.
152 , 463–468.

CrossRef Google Scholar Froese, G. (1962). The respiration of ascites tumour cells at low oxygen concentrations.

Biochim. Biophys. Acta
57 , 509–519.

CrossRef Google Scholar Fung, Y. C. (1991). What are the residual stresses doing in our blood vessels?

Ann. Biomed. Eng.
19 , 237–249.

MathSciNet Google Scholar Fung, Y. C. (1993).

Biomechanics: Mechanical Properties of Living Tissues , New York: Springer.

Google Scholar Gatenby, R. A. (1991). Population ecology issues in tumor growth.

Cancer Res.
51 , 2542–2547.

Google Scholar Gatenby, R. A. (1995a). Models of tumor-host interactions as competing populations: implications for tumor biology and treatment.

J. Theor. Biol.
176 , 447–455.

CrossRef Google Scholar Gatenby, R. A. (1995b). The potential role of transformation-induced metabolic changes in tumor-host interaction.

Cancer Res.
55 , 4151–4156.

Google Scholar Gatenby, R. A. (1996a). Altered glucose metabolism and the invasive tumor phenotype: insights provided through mathematical models.

Int. J. Oncol.
8 , 597–601.

Google Scholar Gatenby, R. A. (1996b). Application of competition theory to tumour growth: implications for tumour biology and treatment.

Eur. J. Cancer
32A , 722–726.

CrossRef Google Scholar Gatenby, R. A. (1998). Mathematical models of tumor-host interactions.

Cancer J.
11 , 289–293.

Google Scholar Gatenby, R. A. and E. T. Gawlinski (1996). A reaction-diffusion model of cancer invasion.

Cancer Res.
56 , 5745–5753.

Google Scholar Gatenby, R. A. and E. T. Gawlinski (2001). Mathematical models of tumor invasion mediated by transformation-induced alteration of microenvironmental pH, in

The Tumour Microenvironment: Causes and Consequences of Hypoxia and Acidity , K. A. Goode and D. J. Chadwick (Eds), Chichester, UK: John Wiley and Sons Ltd.

Google Scholar Gatenby, R. A. and E. T. Gawlinski (2003). The glycolytic phenotype in carcinogenesis and tumor invasion: insights through mathematical models.

Cancer Res.
63 , 3847–3854.

Google Scholar Gatenby, R. A. and P. K. Maini (2003). Cancer summed up.

Nature
421 , 321.

CrossRef Google Scholar Gimbrone, M. A., R. H. Aster, R. S. Cotran, J. Corkery, J. H. Jandl and J. Folkman (1969). Preservation of vascular integrity in organs perfused in vitro with a platelet-richmedium.

Nature
221 , 33–36.

Google Scholar Glass, L. (1973). Instability and mitotic patterns in tissue growth.

J. Dyn. Syst. Meas. Control
95 , 324–327.

Google Scholar Goldacre, R. J. and B. Sylven (1962). On the access of blood-borne dyes to various tumour regions.

Br. J. Cancer
16 , 306–321.

Google Scholar Gompertz, G. (1825). On the nature of the function expressive of the law of human mortality, and on the new mode of determining the value of life contingencies.

Philos. Trans. R. Soc. London
115 , 513–585.

Google Scholar Gray, L. H., A. D. Conger, M. Ebert, S. Hornsey and O. C. A. Scott (1955). The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy.

Br. J. Radiol.
9 , 638–648.

Google Scholar Greene, H. S. N. (1961). Heterologous transplantation of mammalian tumors.

J. Exp. Med.
73 , 461.

CrossRef Google Scholar Greenspan, H. P. (1972). Models for the growth of a solid tumor by diffusion.

Stud. Appl. Math.
52 , 317–340.

Google Scholar Greenspan, H. P. (1974). On the self-inhibited growth of cell cultures.

Growth
38 , 81–95.

Google Scholar Greenspan, H. P. (1976). On the growth and stability of cell cultures and solid tumors.

J. Theor. Biol.
56 , 229–242.

MathSciNet Google Scholar Griffiths, J. D. and A. J. Salsbury (1965).

Circulating Cancer Cells , Chicago: Charles C. Thomas, Publishers.

Google Scholar Griffon-Etienne, G., Y. Boucher, C. Brekken, H. D. Suit and R. K. Jain (1999). Taxane-induced apoptotis decompresses blood vessels and lowers interstitial fluid pressure in solid tumors: clinical implications.

Cancer Res.
59 , 3776–3782.

Google Scholar Gurtin, M. E. (1973). A system of equations for age-dependent population diffusion.

Stud. Appl. Math.
40 , 389–392.

Google Scholar Gurtin, M. E. and R. C. MacCamy (1977). On the diffusion of biological populations.

Math. Biosci.
33 , 35–49.

MathSciNet CrossRef MATH Google Scholar Gutmann, R., M. Leunig, J. Feyh, A. E. Goetz, K. Messmer, E. Kastenbauer and R. K. Jain (1992). Interstitial hypertension in head and neck tumors in patients: correlation with tumor size.

Cancer Res.
52 , 1993–1995.

Google Scholar Haddow, A. (1938). The biological characters of spontaneous tumours of the mouse, with special reference to the rate of growth.

J. Path. Bact.
47 , 553–565.

CrossRef Google Scholar Hahnfeldt, P., D. Panigrahy, J. Folkman and L. Hlatky (1999). Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy.

Cancer Res.
59 , 4770–4775.

Google Scholar Haji-Karim, M. and J. Carlsson (1978). Proliferation and viability in cellular spheroids of human origin.

Cancer Res.
38 , 1457–1464.

Google Scholar Harel, L., G. Chatelain and A. Golde (1984). Density dependent inhibition of growth: inhibitory diffusible factors from 3t3 and rous sarcoma virus (rsv)-transformed 3t3 cells.

J. Cell Phys.
119 , 101–106.

CrossRef Google Scholar Hashizume, H., P. Baluk, S. Morikawa, J. W. McLean, G. Thurston, S. Roberge, R. K. Jain and D. M. McDonald (2000). Openings between defective endothelial cells explain tumor vessel leakiness.

Am. J. Pathol.
156 , 1363–1380.

Google Scholar Helmlinger, G., P. A. Netti, H. D. Lichtenbeld, R. J. Melder and R. K. Jain (1997). Solid stress inhibits the growth of multicellular tumour spheroids.

Nat. Biotechnol.
15 , 778–783.

CrossRef Google Scholar Hickman, J. A., C. S. Potten, A. J. Merritt and T. C. Fisher (1994). Apoptosis and cancer chemotherapy.

Philos. Trans. R. Soc. Lond. B
345 , 319–325.

Google Scholar Hill, A. V. (1928). The diffusion of oxygen and lactic acid through tissues.

R. Soc. Proc. B
104 , 39–96.

Google Scholar Hirst, D. G. and J. Denekamp (1979). Tumour cell proliferation in relation to the vasculature.

Cell Tissue Kinet.
12 , 31–42.

Google Scholar Hirst, D. G., J. Denekamp and B. Hobson (1982). Proliferation kinetics of endothelial and tumour cells in three mouse mammary carcinomas.

Cell Tissue Kinet.
15 , 251–261.

Google Scholar Hirst, D. G., V. K. Hirst, B. Joiner, V. Prise and K. M. Shaffi (1991). Changes in tumour morphology with alterations in oxygen availability: further evidence for oxygen as a limiting substrate.

Br. J. Cancer
64 , 54–58.

Google Scholar Hoger, A., T. J. Van Dyke and V. A. Lubarda (2002). On the growth part of deformation gradient for residually-stressed biological materials (submitted).

Google Scholar Hughes, F. and C. McCulloch (1991). Quantification of chemotactic response of quiescent and proliferating fibroblasts in Boyden chambers by computer-assisted image analysis.

J. Histochem. Cytochem.
39 , 243–246.

Google Scholar Huxley, J. S. (1932).

Problems of Relative Growth , New York: The Dial Press.

Google Scholar Huyghe, J. M. and J. D. Janssen (1997). Quadriphasic mechanics of swelling incompressible porous media.

Int. J. Eng. Sci.
35 , 793–802.

CrossRef MATH Google Scholar
Imperial Cancer Research Fund , ICRF, 1994.

Google Scholar Iwata, K. K., C. M. Fryling, W. B. Knott and G. J. Todaro (1985). Isolation of tumour cell growth-inhibiting factors from a human rhabdomysarcoma cell line.

Cancer Res.
45 , 2689–2694.

Google Scholar Jackson, T. L. (2002). Vascular tumor growth and treatment: consequences of polyclonality, competition and dynamic vascular support.

J. Math. Biol.
44 , 201–226.

MATH MathSciNet CrossRef Google Scholar Jackson, T. L. and H. M. Byrne (2000). A mathematical model to study the effects of drug resistance and vasculature on the response of solid tumors to chemotherapy.

Math. Biosci.
164 , 17–38.

MathSciNet CrossRef MATH Google Scholar Jain, R. K. (1987). Transport of molecules across tumor vasculature.

Cancer Metastasis Rev.
6 , 559–593.

CrossRef Google Scholar Jain, R. K. (1994). Barriers to drug delivery in solid tumors.

Sci. Am.
271 , 58–66.

CrossRef Google Scholar Jain, R. K. and L. T. Baxter (1998). Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumour: significance of elevated interstitial pressure.

Cancer Res.
48 , 7022–7032.

Google Scholar Jain, R. K. and J. Wei (1977). Dynamics of drug transport in solid tumors: distributed parameter model.

J. Bioeng.
1 , 313–330.

Google Scholar Jiang, W. G. and R. E. Mansel (1996). Progress in anti-invasion and anti-metastasis research and treatment.

Int. J. Oncol.
9 , 1013–1028.

Google Scholar Jones, A. F., H. M. Byrne, J. S. Gibson and J. W. Dold (2000). A mathematical model of the stress induced during avascular tumour growth.

J. Math. Biol.
40 , 473–499.

MathSciNet CrossRef MATH Google Scholar Kastan, M. B., C. E. Canman and C. J. Leonard (1995). P53, cell cycle control and apoptosis: implications for cancer.

Cancer Metast. Rev.
14 , 3–15.

CrossRef Google Scholar Kendall, D. G. (1948). On the role of variable cell generation time in the development of a stochastic birth process.

Biometrika
35 , 316–330.

MATH MathSciNet CrossRef Google Scholar Kerr, J. F. R. (1971). Shrinkage necrosis: a distinct mode of cellular death.

J. Path.
105 , 13–20.

CrossRef Google Scholar Kerr, J. F. R., A. H. Wyllie and A. R. Currie (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics.

Br. J. Cancer
26 , 239–257.

Google Scholar Kerr, J. F. R., J. Searle, B. V. Harmon and C. J. Bishop (1987). Apoptosis, in

Perspectives in Mammalian Cell Death , C. S. Potten (Ed.), UK: Oxford University Press.

Google Scholar King, W. E., D. S. Schultz and R. A. Gatenby (1986a). An analysis of systematic tumor oxygenation using multi-region models.

Chem. Eng. Commun.
64 , 137–153.

Google Scholar King, W. E., D. S. Schultz and R. A. Gatenby (1986b). Multi-region models for describing oxygen tension profiles in human tumors.

Chem. Eng. Commun.
47 , 73–91.

Google Scholar Kleinerman, J. and L. A. Liotta (1977). Release of tumor cells, in

Cancer Invasion and Metastasis: Biologic Mechanisms and Therapy , S. B. Day

et al. (Eds), New York: Raven Press.

Google Scholar Koike, A. (1964). Mechanism of blood-borne metastases. i. Some factors affecting lodgment and growth of tumour cells in the lungs.

Cancer
17 , 450–460.

Google Scholar Kolmogorov, A., A. Petrovsky and N. Piscounoff (1988). Study of the diffusion equation with growth of the quantity of matter and its application to a biology problem, in

Dynamics of Curved Fronts , Boston: Academic Press.

Google Scholar Kunz-Schughart, L. A., M. Kreutz and R. Knuechel (1998). Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology.

Int. J. Exp. Pathol.
79 , 1–23.

CrossRef Google Scholar Kuo, T. H., T. Kubota, M. Watanabe, T. Furukawa, T. Teramoto, K. Ishibiki, M. Kitajima, A. R. Moosa, S. Penman and R. M. Hoffman (1995). Liver colonization competence governs colon cancer metastasis.

Proc. Natl. Acad. Sci. USA
92 , 12085–12089.

Google Scholar Lai, W. M., J. S. Hou and V. C. Mow (1991). A triphasic theory for the swelling and deformation behaviors of articular cartilage.

J. Biomech. Eng.
113 , 245–258.

Google Scholar Lai, W. M., V. C. Mow and W. Zhu (1993). Constitutive modelling of articular cartilage and biomacromolecular solutions.

Trans. ASME
115 , 474–480.

Google Scholar Laird, A. K. (1964). Dynamics of tumor growth.

Br. J. Cancer
18 , 490–502.

Google Scholar Laird, A. K. (1965). Dynamics of relative growth.

Growth
29 , 249–263.

Google Scholar Laird, A. K., S. A. Tyler and A. D. Barton (1965). Dynamics of normal growth.

Growth
21 , 233–248.

Google Scholar Landman, K. A. and C. P. Please (2001). Tumour dynamics and necrosis: surface tension and stability.

IMA J. Math. Appl. Med. Biol.
18 , 131–158.

MATH Google Scholar Landry, J., J. P. Freyer and R. M. Sutherland (1981). Shedding of mitotic cells from the surface of multicell spheroids during growth.

J. Cell. Physiol.
106 , 23–32.

CrossRef Google Scholar Landry, J., J. P. Freyer and R. M. Sutherland (1982). A model for the growth of multicellular spheroids.

Cell Tissue Kinet.
15 , 585–594.

Google Scholar Leu, A. J., D. A. Berk, A. Lymboussaki, K. Alitalo and R. K. Jain (2000). Absence of functional lymphatics within a murine sarcoma: a molecular and functional evaluation.

Cancer Res.
60 , 4324–4327.

Google Scholar Leunig, M., F. Yuan, M. D. Menger, Y. Boucher, A. E. Goetz, K. Messmer and R. K. Jain (1992). Angiogenesis, microvascular architecture, microhemodynamics, and interstitial fluid pressure during early growth of human adnocarcinoma ls174t in scid mice.

Cancer Res.
52 , 6553–6560.

Google Scholar Levine, E. L.

et al. (1995). Apoptosis, intrinsic radiosensitivity and prediction of radiotherapy response in cervical carcinoma.

Radiother. Oncol.
37 , 1–9.

CrossRef Google Scholar Liapis, A. I., G. G. Lipscomb and O. K. Crossier (1982). A model of oxygen diffusion in absorbing tissue.

Math. Modelling
3 , 83–92.

MathSciNet CrossRef MATH Google Scholar Lin, S. H. (1976). Oxygen diffusion in a spheroid cell with non-linear uptake kinetics.

J. Theor. Biol.
60 , 449–457.

CrossRef Google Scholar Liotta, L. A. and C. DeLisi (1977). Method for quantitating tumor cell removal and tumor cell-invasive capacity in experimental metastases.

Cancer Res.
37 , 4003–4008.

Google Scholar Liotta, L. A., J. Kleinerman and G. M. Saidel (1974a). Quantitative relationships of intravascular tumor cells, tumor vessels, and pulmonary metastases following tumor implantation.

Cancer Res.
34 , 997–1004.

Google Scholar Liotta, L. A., J. Kleinerman and G. M. Saidel (1974b). Quantitative relationships of intravascular tumor cells, tumor vessels, and pulmonary metastases following tumor implantation.

Cancer Res.
34 , 997–1004.

Google Scholar Liotta, L. A., G. M. Saidel and J. Kleinerman (1974c). Diffusion model of tumor vascularization and growth.

Bull. Math. Biol.
34 , 117–128.

Google Scholar Liotta, L. A., J. Kleinerman and G. M. Saidel (1976a). The significance of hematogenous tumor cell clumps in the metastatic process.

Cancer Res.
36 , 889–894.

Google Scholar Liotta, L. A., G. M. Saidel and J. Kleinerman (1976b). Stochastic model of metastases formation.

Biometrics 535–550.

Google Scholar Liotta, L. A., G. M. Saidel, J. Kleinerman and C. DeLisi (1977). Micrometastasis therapy: theoretical concepts, in

Cancer Invasion and Metastasis: Biologic Mechanisms and Therapy , S. B. Day

et al. (Eds), New York: Raven Press.

Google Scholar Loewenstein, W. R. (1981). Junctional intercellular communication: the cell-to-cell membrane channel.

Physiol. Rev.
61 , 829–889.

Google Scholar Lomer, E. (1883). Zur frage der heilbarkeit des carcinoms.

Z. Geburtsh. Gynaek.
9 , 277.

Google Scholar Lubarda, V. A. and A. Hoger (2002). On the mechanics of solids with a growing mass.

Int. J. Solids Structures
39 , 4627–4664.

CrossRef MATH Google Scholar Lubkin, S. R. and T. Jackson (2002). Multiphase mechanics of capsule formation in tumors.

J. Biomech. Eng.
124 , 237–243.

CrossRef Google Scholar Lynch, M. P., S. Nawaz and L. E. Gerschenson (1986). Evidence for soluble factors regulating cell death and cell proliferation in primary cultures of rabbit endometrial cells grown on collagen.

Proc. Natl. Acad. Sci.
83 , 4784–4788.

CrossRef Google Scholar MacArthur, B. D. and C. P. Please (2003). Residual stress generation and necrosis formation in multi-cell tumour spheroids.

J. Math. Biol. (submitted).

Google Scholar Maggelakis, S. A. and J. A. Adam (1990). Mathematical model of prevascular growth of a spherical carcinoma.

Math. Comput. Modelling
13 , 23–38.

CrossRef MATH Google Scholar Mantzaris, N., S. Webb and H. G. Othmer (2003). Mathematical modelling of tumour-induced angiogenesis.

J. Math. Biol. (in press).

Google Scholar Marchant, B. P., J. Norbury and A. J. Perumpanani (2000). Traveling shock waves arising in a model of malignant invasion.

SIAM J. Appl. Math.
60 , 463–476.

MathSciNet CrossRef MATH Google Scholar Marchant, B. P., J. Norbury and J. A. Sherratt (2001). Travelling wave solutions to a haptotaxis-dominated model of malignant invasion.

Nonlinearity
14 , 1653–1671.

MathSciNet CrossRef MATH Google Scholar Martin, G. R. and R. K. Jain (1994). Noninvasive measurement for interstitial pH profiles in normal and neoplastic tissue using fluorescent ration imaging microscopy.

Cancer Res.
54 , 5670–5674.

Google Scholar Mayneord, W. V. (1932). On a law of growth of Jensen’s rat sarcoma.

Am. J. Cancer
16 , 841–846.

Google Scholar McDougall, S. R., A. R. A. Anderson, M. A. J. Chaplain and J. A. Sherratt (2002). Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies.

Bull. Math. Biol.
64 , 673–702.

CrossRef Google Scholar McElwain, D. L. S. (1978). A reexamination of oxygen diffusion in a spheroid cell with Michaelis-Menten oxygen uptake kinetics.

J. Theor. Biol.
71 , 255–267.

CrossRef Google Scholar McElwain, D. L. S., R. Callcott and L. E. Morris (1979). A model of vascular compression in solid tumours.

J. Theor. Biol.
78 , 405–415.

CrossRef Google Scholar McElwain, D. L. S. and L. E. Morris (1978). Apoptosis as a volume loss mechanism in mathematical models of solid tumor growth.

Math. Biosci.
39 , 147–157.

CrossRef Google Scholar McElwain, D. L. S. and G. J. Pettet (1993). Cell migration in multicell spheroids: swimming against the tide.

Bull. Math. Biol.
55 , 655–674.

CrossRef MATH Google Scholar McElwain, D. L. S. and P. J. Ponzo (1977). A model for the growth of a solid tumor with non-uniform oxygen consumption.

Math. Biosci.
35 , 267–279.

CrossRef MATH Google Scholar Miyasaka, M. (1995). Cancer metastasis and adhesion molecules.

Clin. Orth. Rel. Res.
312 , 10–18.

Google Scholar Moore, J. V., H. A. Hopkins and W. B. Looney (1983). Response of cell populations in tumor cords to a single dose of cyclophosphamide or radiation.

Eur. J. Cancer Clin. Oncol.
19 , 73–79.

CrossRef Google Scholar Moore, J. V., H. A. Hopkins and W. B. Looney (1984). Tumour-cord parameters in two rat hepatomas that differ in their radiobiological oxygenation status.

Radiat. Envir. Biophys.
23 , 213–222.

CrossRef Google Scholar Moore, J. V., P. S. Haselton and C. M. Buckley (1985). Tumour cords in 52 human bronchial and cervical squamous cell carcinomas: inferences for their cellular kinetics and radiobiology.

Br. J. Cancer
51 , 407–413.

Google Scholar Mottram, J. C. (1936). Factor of importance in radiosensitivity of tumors.

Br. J. Radiol.
9 , 606–614.

CrossRef Google Scholar Mow, V. C., J. S. Hou, J. M. Owens and A. Ratcliffe (1990a). Biphasic and quasilinear viscoelastic theories for hydrated soft tissues, in

Biomechanics of Diarthrodial Joints , New York: Springer.

Google Scholar Mow, V. C., J. S. Hou, J. M. Owens and A. Ratcliffe (1990b). Biphasic and quasilinear viscoelastic theories for hydrated soft tissues, in

Biomechanics of Diarthrodial Joints , New York: Springer.

Google Scholar Mueller-Klieser, W. F. and R. M. Sutherland (1982). Oxygen tensions in multicell spheroids of two cell lines.

Br. J. Cancer
45 , 256–263.

Google Scholar Mueller-Klieser, W. (2000). Tumor biology and experimental therapeutics.

Crit. Rev. Oncol. Hematol.
36 , 123–139.

Google Scholar Murray, J. D. (2002).

Mathematical Biology, I: An Introduction , Berlin: Springer.

Google Scholar Nagle, R. B., J. D. Knox, C. Wolf, G. T. Bowden and A. E. Cress (1994). Adhesion molecules, extracellular matrix and proteases in prostrate carcinoma.

J. Cell. Biochem. Suppl.
19 , 232–237.

Google Scholar Netti, P. A., L. T. Baxter, Y. Boucher, R. Skalak and R. K. Jain (1995). Time-dependent behavior of interstitial fluid pressure in solid tumors: implications for drug delivery.

Cancer Res.
55 , 5451–5458.

Google Scholar Netti, P. A., L. T. Baxter, Y. Boucher, R. Skalak and R. K. Jain (1997). Macro-and microscopic fluid transport in living tissues: application to solid tumors.

AIChE J.
43 , 818–834.

CrossRef Google Scholar Ng, I. O. L., E. C. S. Lai, M. M. T. Lai and S. T. Fan (1992). Tumor encapsulation in hepatocellular carcinoma: a pathological study of 198 cases.

Cancer (N.Y.)
70 , 395–413.

Google Scholar Nor, J. E., J. Christensen, J. Liu, M. Peters, D. J. Mooney, R. M. Strieter and P. J. Polverini (2001). Up-regulation of bcl-2 in microvascular endothelial cells enhances intratumoral angiogenesis and accelerates tumor growth.

Cancer Res.
61 , 2183–2188.

Google Scholar Olson, J. S. (2002).

Bathsheba’s Breast: Women, Cancer and History , Baltimore: Johns Hopkins University Press.

Google Scholar Orme, M. E. and M. A. J. Chaplain (1996). A mathematical model of vascular tumour growth and invasion.

Math. Comput. Modelling
23 , 43–60.

MathSciNet CrossRef MATH Google Scholar Osgood, E. E. (1957). A unifying concept of the etiology of the leukemias, lymphomas, and cancers.

J. Natl. Cancer Inst.
18 , 155–166.

Google Scholar Palka, J., B. Adelmann-Grill, P. Francz and K. Bayreuther (1996). Differentiation stage and cell cycle position determine the chemotactic response of fibroblasts.

Folia Histochem. Cytobiol.
34 , 121–127.

Google Scholar Panetta, J. C. and J. A. Adam (1995). A mathematical model of cycle-specific chemotherapy.

Math. Comput. Modelling
22 , 67–82.

MathSciNet CrossRef MATH Google Scholar Passman, S. L. and J. W. Nunziato (1984). A theory of multiphase mixtures, in

Rational Thermodynamics , C. Truesdell (Ed.), New York: Springer.

Google Scholar Perumpanani, A. J. Malignant and morphogenetic waves, PhD thesis, Oxford University, Hilary Term, 1996.

Google Scholar Perumpanani, A. J. and H. M. Byrne (1999). Extracellular matrix concentration exerts selection pressure on invasive cells.

Eur. J. Cancer
35 , 1274–1280.

CrossRef Google Scholar Perumpanani, A. J. and J. Norbury (1999). Numerical interactions of random and directed motility during cancer invasion.

Math. Comput. Modelling
30 , 123–133.

MathSciNet CrossRef MATH Google Scholar Perumpanani, A. J., J. A. Sherratt, J. Norbury and H. M. Byrne (1996). Biological inferences from a mathematical model for malignant invasion.

Invasion Metastasis
16 , 209–221.

Google Scholar Perumpanani, A. J., J. A. Sherratt, J. Norbury and H. M. Byrne (1999). A two parameter family of travelling waves with a singular barrier arising from the modelling of extracellular matrix mediated cellular invasion.

Physica D
126 , 145–159.

CrossRef Google Scholar Pettet, G. J., D. L. S. McElwain and J. Norbury (2000). Lotka-Volterra equations with chemotaxis: walls, barriers and travelling waves.

IMA J. Math. Appl. Med. Biol.
17 , 395–413.

MATH Google Scholar Pettet, G. J., C. P. Please, M. J. Tindall and D. L. S. McElwain (2001). The migration of cells in multicell tumor spheroids.

Bull. Math. Biol.
63 , 231–257.

CrossRef Google Scholar Pioletti, D. P., L. R. Rakotomanana, J.-F. Benvenuti and P.-F. Leyvraz (1998). Viscoelastic constitutive law in large deformations: application to human knee ligaments and tendons.

J. Biomech.
31 , 753–757.

CrossRef Google Scholar Pisani, P., F. Bray and D. M. Parkin (2001). Estimates of the world-wide prevalence of cancer for 25 sites in the adult population.

Int. J. Cancer
97 , 72–81.

CrossRef Google Scholar Please, C. P., G. J. Pettet and D. L. S. McElwain (1998). A new approach to modelling the formation of necrotic regions in tumours.

Appl. Math. Lett.
11 , 89–94.

MathSciNet CrossRef MATH Google Scholar Please, C. P., G. J. Pettet and D. L. S. McElwain (1999). Avascular tumour dynamics and necrosis.

Math. Models Methods Appl. Sci
9 , 569–579.

CrossRef MATH Google Scholar Porter, R. (1997).

The Greatest Benefit to Mankind: A Medical History of Humanity from Antiquity to the Present , London: Harper Collins Publishers.

Google Scholar Preziosi, L. and A. Farina (2002). On Darcy’s law for growing porous media.

Int. J. Non-Linear Mechanics
37 , 485–491.

CrossRef MATH Google Scholar Raff, M. C. (1992). Social controls on cell survival and cell death.

Nature
356 , 397–400.

CrossRef Google Scholar Rajagopal, K. R. and A. R. Srinivasa (1998). Mechanics of the inelastic behavior of materials. i. Theoretical underpinnings.

Int. J. Plast.
14 , 945–967.

CrossRef MATH Google Scholar Rajagopal, K. R. and L. Tao (1995).

Mechanics of Mixtures , Singapore: World Scientific.

MATH Google Scholar Ritchie, A. C. (1970). The classification morphology and behaviour of tumours, in

General Pathology , 4th edn, H. E. W. Florey (Ed.), Lloyd-Luke.

Google Scholar Robbins, S. L., R. S. Cotran and V. Kuman (1984). Neoplasia, in

Pathologic Basis of Disease , 3rd edn, W. B. Saunders (Ed.), Philadelphia: Saunders Co.

Google Scholar Robertson, T. B. (1923).

The Chemical Basis of Growth and Senescence , Philadelphia: J. B. Lippincott Co.

Google Scholar Rodriguez, E. K., A. Hoger and A. D. McCulloch (1994). Stress-dependent finite growth in soft elastic tissues.

J. Biomech.
27 , 455–467.

CrossRef Google Scholar Ruoslahti, E. (1996). How cancer spreads.

Sci. Am. 42–47.

Google Scholar Ruoslahti, E. (2002). Specialization of tumour vasculature.

Nat. Rev. Cancer
2 , 83–90.

CrossRef Google Scholar Saidel, G. M., L. A. Liotta and J. Kleinerman (1976). System dynamics of a metastatic process from an implanted tumor.

J. Theor. Biol.
56 , 417–434.

Google Scholar Schultz, D. S. and W. E. King (1987). On the analysis of oxygen diffusion in biological systems.

Math. Biosci.
83 , 179–190.

CrossRef MATH Google Scholar Seftor, R. E., E. A. Seftor, K. R. Gehlsen and W. G. Stetler-Stevenson (1992). Role of alpha-v-beta-3 integrin in human melanoma cell invasion.

Proc. Natl. Acad. Sci. USA
89 , 1557–1561.

CrossRef Google Scholar Shannon, M. A. and B. Rubinsky (1992). The effect of tumour growth on the stress distribution in tissue.

Adv. Biol. Heat Mass Transfer
231 , 35–38.

Google Scholar Sherratt, J. A. (1990). Wave front propagation in a competition equation with a new motility term modelling contact inhibition between cell populations.

Proc. R. Soc. Lond. B
241 , 29–36.

Google Scholar Sherratt, J. A. (1993). Cellular growth and travelling waves of cancer.

SIAM Appl. Math.
53 , 1713–1730.

MATH MathSciNet CrossRef Google Scholar Sherratt, J. A. (2000). Wave front propagation in a competition equation with a new motility term modelling contact inhibition between cell populations.

Proc. R. Soc. Lond. A.
53 , 2365–2386.

MathSciNet Google Scholar Sherratt, J. A. and M. A. J. Chaplain (2001). A new mathematical model for avascular tumour growth.

J. Math. Biol.
43 , 291–312.

MathSciNet CrossRef MATH Google Scholar Shymko, R. M. and L. Glass (1976). Cellular and geometric control of tissue growth and mitotic instability.

J. Theor. Biol.
63 , 355–374.

CrossRef Google Scholar Skalak, R. (1981). Growth as a finite displacement field, in

Proceedings of the IUTAM Symposium on Finite Elasticity , The Hague, D. E. Carlson and R. T. Shield (Eds), Martinus Nijhoff Publishers, pp. 347–355.

Google Scholar Skalak, R., G. Dasgupta and M. Moss (1982). Analytical description of growth.

J. Theor. Biol.
94 , 555–577.

MathSciNet CrossRef Google Scholar Skalak, R., S. Zargaryan, R. K. Jain, P. A. Netti and A. Hoger (1996). Compatibility and the genesis of residual stress by volumetric growth.

J. Math. Biol.
34 , 889–914.

MATH Google Scholar Sleeman, B. D. and H. R. Nimmo (1998). Fluid transport in vascularized tumours and metastasis.

IMA J. Math. Appl. Med. Biol.
15 , 53–63.

MATH Google Scholar Snijders, H., J. Huyghe, P. Willems, M. Drost, J. Janssen and A. Huson (1992). A mixture approach to the mechanics of the human intervertebral disc, in

Mechanics of Swelling , T. K. Karalis (Ed.), Berlin, Heidelberg: Springer.

Google Scholar Stainsby, W. N. and A. B. Otis (1961). Blood flow, blood oxygen tension, oxygen uptake and oxygen transport in skeletal muscle.

Am. J. Physiol.
201 , 117–122.

Google Scholar Stetler-Stevenson, W. G., S. Aznavoorian and L. A. Liotta (1993). Tumor cell interactions with the extra-cellular matrix during invasion and metastasis.

Annu. Rev. Cell Biol.
9 , 541–573.

CrossRef Google Scholar Stohrer, M., Y. Boucher, M. Stangassinger and R. K. Jain (2000). Oncotic pressure in solid tumors is elevated.

Cancer Res.
60 , 4251–4255.

Google Scholar Sutherland, R. M. (1988). Cell and environment interactions in tumor microregions: the multicell spheroid model.

Science
240 , 177–184.

Google Scholar Sutherland, R. M. and R. E. Durand (1973). Hypoxic cells in an in vitro tumour model.

Int. J. Radiat. Biol.
23 , 235–246.

Google Scholar Sutherland, R. M., J. A. McCredie and W. R. Inch (1971). Growth of multicell spheroids in tissue culture as a model of nodular carcinomas.

J. Natl. Cancer Inst.
46 , 113–120.

Google Scholar Swan, G. W. (1981).

Lecture Notes in Biomathematics , Vol. 42, Berlin: Springer.

Google Scholar Taber, L. A. (1995). Biomechanics of growth, remodeling and morphogenesis.

Appl. Mech. Rev.
48 , 487–545.

CrossRef Google Scholar Taber, L. A. and D. W. Eggers (1996). Theoretical study of stress-modulated growth in the aorta.

J. Theor. Biol.
180 , 343–357.

CrossRef Google Scholar Taber, L. A. and R. Perucchio (2000). Modeling heart development.

J. Elasticity
61 , 165–197.

MathSciNet CrossRef MATH Google Scholar Takahashi, M. (1966). Theoretical basis for cell cycle analysis. i. Labelled mitosis wave method.

J. Theor. Biol.
13 , 202–211.

CrossRef Google Scholar Takahashi, M. (1968). Theoretical basis for cell cycle analysis. ii. Further studies on labelled mitosis wave method.

J. Theor. Biol.
18 , 195.

CrossRef Google Scholar Tannock, I. F. (1968). The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour.

Br. J. Cancer
22 , 258–273.

Google Scholar Tannock, I. F. and A. Howes (1973). The response of viable tumor cords to a single dose of radiation.

Radiat. Res.
55 , 477–486.

Google Scholar Thames, H. D., A. C. C. Ruifrok, L. Milas, N. Hunter, K. A. Mason, N. H. A. Terry and R. A. White (1996). Accelerated repopulation during fractionated-irradiation of a murine ovarian carcinoma: down-regulation of apoptosis as a possible mechanism.

Int. J. Radiat. Oncol. Biol. Phys.
35 , 951–962.

CrossRef Google Scholar Thomlinson, R. H. and L. H. Gray (1955). The histological structure of some human lung cancers and the possible implications for radiotherapy.

Br. J. Cancer
9 , 539–549.

Google Scholar Thompson, K. E. and H. M. Byrne (1999). Modelling the internalization of labelled cells in tumour spheroids.

Bull. Math. Biol.
61 , 601–623.

CrossRef Google Scholar Tracqui, P., G. C. Cruywagen, D. E. Woodward, G. T. Bartoo, J. D. Murray and E. G. Alvord (1995). A mathematical model of glioma growth—the effect of chemotherapy on spatiotemporal growth.

Cell Prolif.
28 , 17–31.

Google Scholar Truesdell, C. and W. Noll (1965). The non-linear field theories of mechanics, in

Handbuch der Physik , Flugge (Ed.), Vol. III/III, Berlin: Springer.

Google Scholar Truesdell, C. and R. Toupin (1960). The classical field theories, in

Handbuch der Physik , S. Flugge (Ed.), vol. III/I, Berlin: Springer.

Google Scholar Tyzzer, E. E. (1913). Factors in production and growth of tumour metastasis.

J. Med. Res.
28 , 309–332.

Google Scholar Vaidya, V. G. and F. J. Alexandro (1982). Evaluation of some mathematical models for tumour growth.

Int. J. Biomed. Comput.
13 , 19–35.

MathSciNet CrossRef Google Scholar Van Dyke, T. J. and A. Hoger (2001). Rotations in the theory of growth for soft biological materials, in

Proceedings of the 2001 ASME Bioengineering Conference, BED-Vol. 50 , USA, pp. 647–648.

Google Scholar Van Lancker, M., C. Goor, R. Sacre, J. Lamote, S. Van Belle, N. De Coene, A. Roelstraete and G. Storme (1995). Patterns of axillary lymph node metastasis in breast cancer.

Am. J. Clin. Oncol.
18 , 267–272.

Google Scholar Volpe, J. G. P. (1988). Genetic instability of cancer: why a metastatic tumor is unstable and a benign tumor is stable.

Cancer Genet. Cytogenet.
14 , 125–134.

CrossRef Google Scholar von Bertalanffy, L. (1960).

Fundamental Aspects of Normal and Malignant Growth , W. W. Nowinsky (Ed.), Amsterdam: Elsevier, pp. 137–259 (Chapter 2).

Google Scholar Warburg, O. (1930).

The Metabolism of Tumors , London: Constable Press.

Google Scholar Ward, J. P. (1997). Mathematical modelling of avascular tumour growth, PhD thesis, Nottingham University.

Google Scholar Ward, J. P. and J. R. King (1997). Mathematical modelling of avascular tumour growth.

IMA J. Math. Appl. Med. Biol.
14 , 36–69.

Google Scholar Ward, J. P. and J. R. King (1999a). Mathematical modelling of avascular tumour growth, ii. Modelling growth saturation.

IMA J. Math. Appl. Med. Biol.
16 , 171–211.

MATH Google Scholar Ward, J. P. and J. R. King (1999b). Mathematical modelling of the effects of mitotic inhibitors on avascular tumour growth.

J. Theor. Med.
1 , 287–311.

MATH Google Scholar Ward, J. P. and J. R. King (2000). Modelling the effect of cell shedding on avascular tumour growth.

J. Theor. Med.
2 , 155–174.

MATH Google Scholar Ward, J. P. and J. R. King (2003). Mathematical modelling of drug transport in tumour multicell spheroids and monolayer cultures.

Math. Biosci.
181 , 177–207.

MathSciNet CrossRef MATH Google Scholar Webb, S. D., J. A. Sherratt and R. G. Fish (1999a). Alterations in proteolytic activity at low pH and its association with invasion: a theoretical model.

Clin. Exp. Metastasis
17 , 397–407.

CrossRef Google Scholar Webb, S. D., J. A. Sherratt and R. G. Fish (1999b). Mathematical modelling of tumour acidity: regulation of intracellular pH.

J. Theor. Biol.
196 , 237–250.

CrossRef Google Scholar Wein, L. M., J. T. Wu, A. G. Ianculescu and R. K. Puri (2002). A mathematical model of the impact of infused targeted cytotoxic agents on brain tumours: implications for detection, design and delivery.

Cell Prolif.
35 , 343–361.

CrossRef Google Scholar Weiss, L. (2000). The morphologic documentation of clinical progression, invasion metastasis—staging.

Cancer Metastasis Rev.
19 , 303–313.

CrossRef Google Scholar Wette, R., I. N. Katz and E. Y. Rodin (1974a). Stochastic processes for solid tumor kinetics i. Surface-regulated growth.

Math. Biosci.
19 , 231–255.

CrossRef MATH Google Scholar Wette, R., I. N. Katz and E. Y. Rodin (1974b). Stochastic processes for solid tumor kinetics ii. Diffusion-regulated growth.

Math. Biosci.
21 , 311–338.

CrossRef MATH Google Scholar Winsor, C. P. (1932). The Gompertz curve as a growth curve.

Proc. Natl. Acad. Sci. USA 1–7.

Google Scholar Yuhas, J. M. and A. P. Li (1978). Growth fraction as the major determinant of multicellular tumor spheroid growth rates.

Cancer Res.
38 , 1528–1532.

Google Scholar Yuhas, J. M., A. E. Tarleton and K. B. Molzen (1978). Multicellular tumor spheroid formation by breast cancer cells isolated from different sites.

Cancer Res.
38 , 2486–2491.

Google Scholar Znati, C. A., M. Rosenstein, Y. Boucher, M. W. Epperly, W. D. Bloomer and R. K. Jain (1996). Effect of radiation on interstitial fluid pressure and oxygenation in a human tumor xenograft.

Cancer Res.
56 , 964–968.

Google Scholar © Society for Mathematical Biology 2004

Authors and Affiliations 1. School of Mathematical Sciences Queensland University of Technology Brisbane Australia