Bulletin of Mathematical Biology

, Volume 66, Issue 4, pp 663–687 | Cite as

Competition and natural selection in a mathematical model of cancer

  • John D. Nagy


A malignant tumor is a dynamic amalgamation of various cell phenotypes, both cancerous (parenchyma) and healthy (stroma). These diverse cells compete over resources as well as cooperate to maintain tumor viability. Therefore, tumors are both an ecological community and an integrated tissue. An understanding of how natural selection operates in this unique ecological context should expose unappreciated vulnerabilities shared by all cancers. In this study I address natural selection’s role in tumor evolution by developing and exploring a mathematical model of a heterogenous primary neoplasm. The model is a system of nonlinear ordinary differential equations tracking the mass of up to two different parenchyma cell types, the mass of vascular endothelial cells from which new tumor blood vessels are built and the total length of tumor microvessels. Results predict the possibility of a hypertumor—a focus of aggressively reproducing parenchyma cells that invade and destroy part or all of the tumor, perhaps before it becomes a clinical entity. If this phenomenon occurs, then we should see examples of tumors that develop an aggressive histology but are paradoxically prone to extinction. Neuroblastoma, a common childhood cancer, may sometimes fit this pattern. In addition, this model suggests that parenchyma cell diversity can be maintained by a tissue-like integration of cells specialized to provide different services.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bertuzzi, A., M. Faretta, A. Gandolfi, C. Sinisgalli, G. Starace, G. Valoti and P. Ubezio (2002). Kinetic heterogeneity of an experimental tumour revealed by BrdUrd incorporation and mathematical modeling. Bull. Math. Biol. 64, 355–384.CrossRefGoogle Scholar
  2. Cahill, D. P., K. W. Kinzler, B. Vogelstein and C. Lengauer (1999). Genetic instability and Darwinian selection in tumors. Trends Cell Biol. 9, M57–M60.CrossRefGoogle Scholar
  3. Carmeliet, P. and R. K. Jain (2000). Angiogenesis in cancer and other diseases. Nature 407, 249–257.CrossRefGoogle Scholar
  4. Chang, C. and Z. Werb (2001). The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis. Trends Cell Biol. 11, S37–S43.Google Scholar
  5. Cheng, K. C. and L. A. Loeb (1997). Genomic stability and instability: a working paradigm. Curr. Top. Microbiol. Immunol. 221, 5–18.Google Scholar
  6. Colombo, M. P., L. Lombardi, C. Melani, M. Parenza, C. Baroni, L. Ruco and A. Stoppacciaro (1996). Hypoxic tumor cell death and modulation of endothelial adhesion molecules in the regression of granulocyte colony-stimulating factor-transduced tumors. Am. J. Pathol. 148, 473–483.Google Scholar
  7. Cotran, R. S., V. Kumar and T. Collins (1999). Pathologic Basis of Disease, 6th edn, Philadelphia: W.B. Saunders.Google Scholar
  8. Evan, G. I. and K. H. Vousden (2001). Proliferation, cell cycle and apoptosis in cancer. Nature 411, 342–347.CrossRefGoogle Scholar
  9. Folkman, J., P. Hahnfeldt and L. Hlatky (2000). Cancer: looking outside the genome. Nat. Rev. Mol. Cell Biol. 1, 76–79.CrossRefGoogle Scholar
  10. Gammack, D., H. M. Byrne and C. E. Lewis (2001). Estimating the selective advantage of mutant p53 tumour cells to repeated rounds of hypoxia. Bull. Math. Biol. 63, 135–166.CrossRefGoogle Scholar
  11. Ganong, W. F. (1999). Review of Medical Physiology, 19th edn, Stamford, CT: Appleton and Lange.Google Scholar
  12. Graber, T. G., C. Osmanian, T. Jacks, D. E. Housman, C. J. Koch, S. W. Lowe and A. J. Giaccia (1996). Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379, 88–91.CrossRefGoogle Scholar
  13. Hannahan, D. and R. A. Weinberg (2000). The hallmarks of cancer. Cell 100, 57–70.CrossRefGoogle Scholar
  14. Holash, J., P. C. Maisonpierre, D. Compton, P. Boland, C. R. Alexander, D. Zagzag, G. D. Yancopolous and S. J. Weigand (1998). Vessel cooperation, regression and growth in tumors mediated by angiopoietins and VEGF. Science 221, 1994–1998.Google Scholar
  15. Horn, L., W. S. Krajewski, P. K. Paul, M. J. Song and M. J. Sydor (1988). Computerized 3-D reconstruction of small blood vessels from high voltage electron-micrographs of thick serial cross sections, in Vascular Endothelium in Health and Disease, S. Chien (Ed.), New York: Plenum Press, pp. 35–42.Google Scholar
  16. Jain, R. K., N. Safabakhsh, A. Sckell, Y. Chen, P. Jiang, L. Benjamin, F. Yuan and E. Keshet (1998). Endothelial cell death, angiogenesis, and microvascular function after castration in an androgen-dependent tumor: role of vascular endothelial growth factor. Proc. Natl. Acad. Sci. 95, 10820–10825.Google Scholar
  17. Kitanaka, C., K. Kato, I. R. Sakurada, A. Tomiyama et al. (2002). Increased Ras expression and caspase-independent neuroblasotoma cell death: possible mechanism of spontaneous regression. J. Natl. Cancer. Inst. 94, 319–321.Google Scholar
  18. Kraggerud, S. M., J. A. Sandvik and E. O. Pattersen (1995). Regulation of protein synthesis in human cells exposed to extreme hypoxia. Anticancer Res. 15, 683–686.Google Scholar
  19. Lobov, I. B., P. C. Brooks and R. A. Lang (2002). Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo. Proc. Natl. Acad. Sci. 99, 11205–11210.Google Scholar
  20. Loeb, L. A. (1996). Many mutations in cancer. Cancer Surv. 28, 329–342.Google Scholar
  21. Mabry, M., B. Nelkin and S. Baylin (1996). Evolutionary model of lung cancer, in Lung Cancer: Principles and Practice, H. I. Pass, J. B. Mitchell, D. H. Johnson and A. T. Turrisi (Eds), Philadelphia, PA: Lippencott-Raven, pp. 133–142.Google Scholar
  22. Miller, D. L., J. A. Dibbens, A. Damert, W. Risau, M. A. Vadas and G. J. Goodall (1998). The vascular endothelial growth factor mRNA contains an internal ribosome entry site. FEBS Lett. 434, 417–420.CrossRefGoogle Scholar
  23. Nagy, J. D. (1996). Evolutionarily attracting dispersal strategies in vertebrate metapopulations, PhD dissertation, Arizona State University, Tempe, AZ.Google Scholar
  24. Neufeld, G., T. Cohen, S. Gengrinovitch and Z. Poltorak (1999). Vascular endothelial growth factor (VEGF) and its receptors. FASEB 13, 9–22.Google Scholar
  25. Qumsiyeh, M. B. and P. Li (2001). Molecular biology of cancer: cytogenetics, in Cancer: Principles and Practice of Oncology, V. T. DeVita Jr., S. Hellman and S. A. Rosenberg (Eds), Philadelphia, PA: Lipincott, Williams and Wilkens.Google Scholar
  26. Rowley, D. R. (1998). What might a stromal responsemean to prostate cancer progression? Cancer Metastasis Rev. 17, 411–419.CrossRefGoogle Scholar
  27. Schofield, D. and R. S. Cotran (1999). Diseases of infancy and childhood, in Pathologic Basis of Disease, 6th edn, R. S. Cotran, V. Kumar and T. Collins (Eds), Philadelphia, PA: W.B. Saunders, pp. 459–491.Google Scholar
  28. Stein, I., M. Neeman, D. Shweik, A. Itin and E. Keshet (1995). Stabilization of vascular endothelial growth factor mRNA by hypoxia and hypoglycemia and coregulation with other ischemia-induced genes. Mol. Cell Biol. 15, 5363–5368.Google Scholar
  29. Terada, T., Y. Okada and Y. Nakanuma (1996). Expression of immunoreactive matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in human normal livers and primary liver tumors. Hepatology 23, 1341–1344.Google Scholar
  30. Testa, J. R. (1996). Chromosome alterations in human lung cancer, in Lung Cancer: Principles and Practice, H. I. Pass, J. B. Mitchell, D. H. Johnson and A. T. Turrisi (Eds), Philadelphia, PA: Lippencott-Raven, pp. 55–71.Google Scholar
  31. Thompson, K. E. and J. A. Royds (1999). Hypoxia and reoxygenation: a pressure for mutant p53 cell selection and tumour progression. Bull. Math. Biol. 61, 759–778.CrossRefGoogle Scholar
  32. Tuxhorn, J. A., G. E. Ayala and D. R. Rowley (2001). Reactive stroma in prostate cancer progression. J. Urol. 166, 2472–2483.CrossRefGoogle Scholar
  33. Vajkoczy, P., M. Farhadi, A. Gaumann, R. Heidenreich, R. Erber, A. Wunder, J. C. Tonn, M. D. Menger and G. Breier (2002). Microtumor growth initiates angiogenic sprouting with simultaneous expresseion of VEGF, VEGF receptor-2, and angiopoietin-2. J. Clin. Invest. 109, 777–785.CrossRefGoogle Scholar
  34. Weibel, E. R. (1984). The Pathway for Oxygen: Structure and Function of the Mammalian Respiratory System, Cambridge: Harvard University Press, p. 425.Google Scholar
  35. Weinert, N. (1997). The multiple roles of tumor stroma. Virchows Arch. 430, 433–443.CrossRefGoogle Scholar
  36. Yancopoulos, G. D., S. Davis, N. W. Gale, J. S. Rudge, S. J. Wiegand and J. Holash (2000). Vascular-specific growth factors and blood vessel formation. Nature 407, 242–248.CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2004

Authors and Affiliations

  • John D. Nagy
    • 1
  1. 1.Department of BiologyScottsdale Community CollegeScottsdaleUSA

Personalised recommendations