Bulletin of Mathematical Biology

, Volume 66, Issue 2, pp 261–299 | Cite as

Qualitative simulation of the initiation of sporulation in Bacillus subtilis

  • Hidde de JongEmail author
  • Johannes Geiselmann
  • Grégory Batt
  • Céline Hernandez
  • Michel Page


Under conditions of nutrient deprivation, the Gram positive soil bacterium Bacillus subtilis can abandon vegetative growth and form a dormant, environmentally-resistant spore instead. The decision to either divide or sporulate is controlled by a large and complex genetic regulatory network integrating various environmental, cell-cycle, and metabolic signals. Although sporulation in B. subtilis is one of the best-understood model systems for prokaryotic development, very little quantitative data on kinetic parameters and molecular concentrations are available. A qualitative simulation method is used to model the sporulation network and simulate the response of the cell to nutrient deprivation. Using this method, we have been able to reproduce essential features of the choice between vegetative growth and sporulation, in particular the role played by competing positive and negative feedback loops.


Bacillus Subtilis Sigma Factor Switching Domain Genetic Regulatory Network Qualitative State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antoniewski, C., B. Savelli and P. Stragier (1990). The spoIIJ gene, which regulates early developmental steps in Bacillus subtilis, belongs to a class of environmentally responsive genes. J. Bacteriol. 172, 86–93.Google Scholar
  2. Bai, U. and I. Mandić-Mulec (1993). SinI modulates the activity of SinR, a developmental switch protein of Bacillus subtilis, by protein-protein interaction. Genes Dev. 7, 139–148.Google Scholar
  3. Burbulys, D., K. A. Trach and J. A. Hoch (1991). Initiation of sporulation in Bacillus subtilis is controlled by a multicomponent phosphorelay. Cell 64, 545–552.CrossRefGoogle Scholar
  4. Burkholder, W. F. and A. D. Grossman (2000). Regulation of the initiation of endospore formation in Bacillus subtilis, in Prokaryotic Development, Y. V. Brun and L. J. Shimkets (Eds), Washington, DC: ASM, pp. 151–166.Google Scholar
  5. Carter, H. L. 3rd and C. P. Moran Jr (1986). New RNA polymerase σ factor under spo0 control in Bacillus subtilis. Proc. Natl Acad. Sci. USA 83, 9438–9442.CrossRefGoogle Scholar
  6. Chung, J. D., G. Stephanopoulos, K. Ireton and A. D. Grossman (1994). Gene expression in single cells of Bacillus subtilis: evidence that a threshold mechanism controls the initiation of sporulation. J. Bacteriol. 176, 1977–1984.Google Scholar
  7. de Jong, H. (2002). Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 9, 69–105.Google Scholar
  8. de Jong, H., J. Geiselmann, G. Batt, C. Hernandez, and M. Page (2002). Qualitative simulation of the initiation of sporulation in B. subtilis. Technical Report RR-4527, INRIA.Google Scholar
  9. de Jong, H., J. Geiselmann, C. Hernandez and M. Page (2003a). Genetic network analyzer: qualitative simulation of genetic regulatory networks. Bioinformatics 19, 336–344.CrossRefGoogle Scholar
  10. de Jong, H., J.-L. Gouzé, C. Hernandez, M. Page, T. Sari and H. Geiselmann (2003b). Qualitative simulation of genetic regulatory networks using piecewise-linear models. Bull. Math. Biol. (this volume).Google Scholar
  11. Dixon, L. G., S. Seredick, M. Richer and G. B. Spiegelman (2001). Developmental gene expression in Bacillus subtilis crsA47 mutants reveals glucose-activated control of the gene for the minor sigma factor σ H. J. Bacteriol. 183, 4814–4822.CrossRefGoogle Scholar
  12. Dubnau, D. and K. Turgay (2000). Regulation of competence in Bacillus subtilis and its relation to stress response, in Bacterial Stress Responses, G. Storz and R. Hengge-Aronis (Eds), Washington, DC: ASM, pp. 249–260.Google Scholar
  13. Dubnau, E., J. Weir, G. Nair, L. Carter 3rd, C. P. Moran Jr and I. Smith (1988). Bacillus sporulation gene spo0H codes for σ 30(σ H). J. Bacteriol. 170, 1054–1062.Google Scholar
  14. Errington, J. (2001). Septation and chromosome segregation during sporulation in Bacillus subtilis. Curr. Opin. Microbiol. 4, 660–666.CrossRefGoogle Scholar
  15. Eymann, C., G. Mittenhuber and M. Hecker (2001). The stringent response, σ H-dependent gene expression and sporulation in Bacillus subtilis. Mol. Gen. Genet. 264, 913–923.CrossRefGoogle Scholar
  16. Fawcett, P., P. Eichenberger, R. Losick and P. Youngman (2000). The trancriptional profile of early to middle sporulation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 97, 8063–8068.CrossRefGoogle Scholar
  17. Ferrari, F. A., K. Trach, D. LeCoq, J. Spence, E. Ferrari and J. A. Hoch (1985). Characterization of the spo0A locus and its deduced product. Proc. Natl Acad. Sci. USA 82, 2647–2651.CrossRefGoogle Scholar
  18. Filippov, A. F. (1988). Differential Equations with Discontinuous Righthand Sides, Dordrecht: Kluwer Academic Publishers.Google Scholar
  19. Fort, P. and P. J. Piggot (1984). Nucleotide sequence of sporulation locus spoIIA in Bacillus subtilis. J. Gen. Microbiol. 130, 2147–2153.Google Scholar
  20. Fujita, M. and Y. Sadaie (1998). Feedback loops involving Spo0A and AbrB in in vitro transcription of the genes involved in the initiation of sporulation in Bacillus subtilis. J. Biochem. (Tokyo) 124, 98–104.Google Scholar
  21. Gaur, N. K., K. Cabane and I. Smith (1988). Structure and expression of the Bacillus subtilis sin operon. J. Bacteriol. 170, 1046–1053.Google Scholar
  22. Gaur, N. K., E. Dubnau and I. Smith (1986). Characterization of a cloned Bacillus subtilis gene that inhibits sporulation in multiple copies. J. Bacteriol. 168, 860–869.Google Scholar
  23. Gaur, N. K., J. Oppenheim and I. Smith (1991). The Bacillus subtilis sin gene, a regulator of alternate developmental processes, codes for a DNA-binding protein. J. Bacteriol. 173, 678–686.Google Scholar
  24. Glass, L. and S. A. Kauffman (1973). The logical analysis of continuous non-linear biochemical control networks. J. Theor. Biol. 39, 103–129.CrossRefGoogle Scholar
  25. Gouzé, J.-L. and T. Sari (2003). A class of piecewise linear differential equations arising in biological models. Dynam. Syst. 17, 299–316.CrossRefGoogle Scholar
  26. Grimshaw, C. E., S. Huang, C. G. Hanstein, M. A. Strauch, D. Burbulys, L. Wang, J. A. Hoch and J. M. Whiteley (1998). Synergistic kinetic interactions between components of the phosphorelay controlling sporulation in Bacillus subtilis. Biochemistry 37, 1365–1375.CrossRefGoogle Scholar
  27. Grossman, A. D. (1995). Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis. Ann. Rev. Genet. 29, 477–508.CrossRefGoogle Scholar
  28. Guespin-Michel, J. F. (1971). Phenotypic reversion in some early blocked sporulation mutants of Bacillus subtilis: isolation and phenotype identification of partial revertants. J. Bacteriol. 108, 241–247.Google Scholar
  29. Haldenwang, W. G. (1995). The sigma factors of Bacillus subtilis. Microbiol. Rev. 59, 1–30.Google Scholar
  30. Healy, J., J. Weir, I. Smith and R. Losick (1991). Post-transcriptional control of a sporulation regulatory gene encoding transcription factor σ H in Bacillus subtilis. Mol. Microbiol. 5, 477–487.Google Scholar
  31. Hecker, M. and U. Völker (2001). General stress response of Bacillus subtilis and other bacteria. Adv. Microb. Physiol. 44, 35–91.CrossRefGoogle Scholar
  32. Heinrich, R. and S. Schuster (1996). The Regulation of Cellular Systems, New York: Chapman & Hall.zbMATHGoogle Scholar
  33. Hoch, J. A. (1976). Genetics of bacterial sporulation. Adv. Genet. 18, 69–98.CrossRefGoogle Scholar
  34. Hoch, J. A. (1993). Regulation of the phosphorelay and the initiation of sporulation in Bacillus subtilis. Ann. Rev. Microbiol. 47, 441–465.CrossRefGoogle Scholar
  35. Jaacks, K. J., J. Healy, R. Losick and A. D. Grossman (1989). Identification and characterization of genes controlled by the sporulation-regulatory gene spo0H in Bacillus subtilis. J. Bacteriol. 171, 4121–4129.Google Scholar
  36. Jiang, M., W. Shao, M. Perego and J. A. Hoch (2000). Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis. Mol. Microbiol. 38, 535–542.CrossRefGoogle Scholar
  37. Kallio, P. T., J. E. Fagelson, J. A. Hoch and M. A. Strauch (1991). The transition state regulator Hpr of Bacillus subtilis is a DNA-binding protein. J. Biol. Chem. 266, 13411–13417.Google Scholar
  38. Kauffman, S. A. (1993). The Origins of Order: Self-Organization and Selection in Evolution, New York: Oxford University Press.Google Scholar
  39. Kohn, K. W. (2001). Molecular interaction maps as information organizers and simulation guides. Chaos 11, 1–14.zbMATHMathSciNetCrossRefGoogle Scholar
  40. Kroos, L., B. Zhang, H. Ichikawa and Y.-T. N. Yu (1999). Control of σ factor activity during Bacillus subtilis sporulation. Mol. Microbiol. 31, 1285–1294.CrossRefGoogle Scholar
  41. Kudoh, J., T. Ikeuchi and K. Kurahashi (1985). Nucleotide sequences of the sporulation gene spo0A and its mutant genes of Bacillus subtilis. Proc. Natl. Acad. Sci. USA 82, 2665–2668.CrossRefGoogle Scholar
  42. Lazazzera, B. A., I. G. Kurtser, R. S. McQuade and A. D. Grossman (1999). An autoregulatory circuit affecting peptide signaling in Bacillus subtilis. J. Bacteriol. 181, 5193–5200.Google Scholar
  43. LeDeaux, J. R., N. Yu and A. D. Grossman (1995). Different roles for KinA, KinB, and KinC in the initiation of sporulation in Bacillus subtilis. J. Bacteriol. 177, 861–863.Google Scholar
  44. Levin, P. A. and A. D. Grossman (1998). Cell cycle and sporulation in Bacillus subtilis. Curr. Opin. Microbiol. 1, 630–635.CrossRefGoogle Scholar
  45. Lewis, R. J., D. J. Scott, J. A. Brannigan, J. C. Ladds, M. A. Cervin, G. B. Spiegelman, J. G. Hoggett, I. Barak and A. J. Wilkinson (2002). Dimer formation and transcription activation in the sporulation response regulator Spo0A. J. Mol. Biol. 316, 235–245.CrossRefGoogle Scholar
  46. Louie, P., A. Lee, K. Stansmore, R. Grant, C. Ginther and T. Leighton (1992). Roles of rpoD, spoIIF, spoIIJ, spoIIN, and sin in regulation of Bacillus subtilis stage II sporulation-specific transcription. J. Bacteriol. 174, 3570–3576.Google Scholar
  47. Mandić-Mulic, I., L. Doukhan and I. Smith (1995). The Bacillus subtilis SinR protein is a repressor of the key sporulation gene spo0A. J. Bacteriol. 177, 4619–4627.Google Scholar
  48. Mandić-Mulec, I., N. Gaur, U. Bai and I. Smith (1992). Sin, a stage-specific repressor of cellular differentiation. J. Bacteriol. 174, 3561–3569.Google Scholar
  49. Mendoza, L., D. Thieffry and E. R. Alvarez-Buylla (1999). Genetic control of flower morphogenesis in Arabidopsis thaliana: a logical analysis. Bioinformatics 15, 593–606.CrossRefGoogle Scholar
  50. Mestl, T., E. Plahte and S. W. Omholt (1995). A mathematical framework for describing and analysing gene regulatory networks. J. Theor. Biol. 176, 291–300.CrossRefGoogle Scholar
  51. Moszer, I., L. M. Jones, S. Moreira, C. Fabry and A. Danchin (2002). SubtiList: the reference database for the Bacillus subtilis genome. Nucleic Acids Res. 30, 62–65.CrossRefGoogle Scholar
  52. Mueller, J. P., G. Bukusoglu and A. L. Sonenshein (1992). Transcriptional regulation of Bacillus subtilis glucose starvation-inducible genes: control of gsiA by the ComP-ComA signal transduction system. J. Bacteriol. 174, 4361–4373.Google Scholar
  53. Perego, M. (1998). Kinase-phosphatase competition regulates Bacillus subtilis development. Trends Microbiol. 6, 366–370.CrossRefGoogle Scholar
  54. Perego, M., S. P. Cole, D. Burbulys, K. Trach and J. A. Hoch (1989). Characterization of the gene for a protein kinase which phosphorylates the sporulation-regulatory proteins Spo0A and Spo0F of Bacillus subtilis. J. Bacteriol. 171, 6187–6196.Google Scholar
  55. Perego, M. and J. A. Hoch (1987). Isolation and sequence of the spo0E gene: its role in initiation of sporulation in Bacillus subtilis. Mol. Microbiol. 1, 125–132.Google Scholar
  56. Perego, M. and J. A. Hoch (1988). Sequence analysis of the hpr locus, a regulatory gene for protease production and sporulation in Bacillus subtilis. J. Bacteriol. 170, 2560–2567.Google Scholar
  57. Perego, M. and J. A. Hoch (1991). Negative regulation of Bacillus subtilis sporulation by the spo0E gene product. J. Bacteriol. 173, 2514–2520.Google Scholar
  58. Perego, M., G. B. Spiegelman and J. A. Hoch (1988). Structure of the gene for the transition state regulator, abrB: regulator synthesis is controlled by the spo0A sporulation gene in Bacillus subtilis. Mol. Microbiol. 2, 689–699.Google Scholar
  59. Perego, M., J. J. Wu, G. B. Spiegelman and J. A. Hoch (1991). Mutational dissociation of the positive and negative regulatory properties of the Spo0A sporulation transcription factor of Bacillus subtilis. Gene 100, 207–212.CrossRefGoogle Scholar
  60. Phillips, Z. E. and M. A. Strauch (2002). Bacillus subtilis sporulation and stationary phase gene expression. Cell. Mol. Life Sci. 59, 392–402.CrossRefGoogle Scholar
  61. Plahte, E., T. Mestl and S. W. Omholt (1998). A methodological basis for description and analysis of systems with complex switch-like interactions. J. Math. Biol. 36, 321–348.MathSciNetCrossRefzbMATHGoogle Scholar
  62. Predich, M., G. Nair and I. Smith (1992). Bacillus subtilis early sporulation genes kinA, spo0F, and spo0A are transcribed by the RNA polymerase containing σ H. J. Bacteriol. 174, 2771–2778.Google Scholar
  63. Ptashne, M. (1992). A Genetic Switch: Phage λ and Higher Organisms, 2nd edn, Cambridge, MA: Cell Press & Blackwell Science.Google Scholar
  64. Sánchez, L. and D. Thieffry (2001). A logical analysis of the Drosophila gap genes. J. Theor. Biol. 211, 115–141.CrossRefGoogle Scholar
  65. Segel, L. A. (1984). Modeling Dynamic Phenomena in Molecular and Cellular Biology, Cambridge, MA: Cambridge University Press.zbMATHGoogle Scholar
  66. Shafikhani, S. H., I. Mandic-Mulec, M. A. Strauch, I. Smith and T. Leighton (2002). Postexponential regulation of sin operon expression in Bacillus subtilis. J. Bacteriol. 184, 564–571.CrossRefGoogle Scholar
  67. Siranosian, K. J. and A. D. Grossman (1994). Activation of spo0A transcription by σ H is necessary for sporulation but not for competence in Bacillus subtilis. J. Bacteriol. 176, 3812–3815.Google Scholar
  68. Smith, I. (1993). Regulatory proteins that control late-growth development, in Bacillus subtilis and other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics, A. L. Sonenshein, J. A. Hoch and R. Losick (Eds), Washington, DC: ASM, pp. 785–800.Google Scholar
  69. Smith, I., I. Mandić-Mulec and N. Gaur (1991). The role of negative control in sporulation. Res. Microbiol. 142, 831–839.CrossRefGoogle Scholar
  70. Snoussi, E. H. (1989). Qualitative dynamics of piecewise-linear differential equations: a discrete mapping approach. Dyn. Stab. Syst. 4, 189–207.zbMATHMathSciNetGoogle Scholar
  71. Sonenshein, A. L. (2000a). Bacterial sporulation: a response to environmental signals, in Bacterial Stress Responses, G. Storz and R. Hengge-Aronis (Eds), Washington, DC: ASM, pp. 199–215.Google Scholar
  72. Sonenshein, A. L. (2000b). Control of sporulation initiation in Bacillus subtilis. Curr. Opin. Microbiol. 3, 561–566.CrossRefGoogle Scholar
  73. Stragier, P. and R. Losick (1996). Molecular genetics of sporulation in Bacillus subtilis. Ann. Rev. Genet. 30, 297–341.CrossRefGoogle Scholar
  74. Strauch, M. A. (1993a). AbrB, a transition state regulator, in Bacillus subtilis and other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics, A. L. Sonenshein, J. A. Hoch and R. Losick (Eds), Washington, DC: ASM, pp. 757–764.Google Scholar
  75. Strauch, M. A. (1993b). Regulation of Bacillus subtilis gene expression during the transition from exponential growth to stationary phase. Prog. Nucleic Acid Res. Mol. Biol. 46, 121–153.CrossRefGoogle Scholar
  76. Strauch, M. A. and J. A. Hoch (1993). Transition-state regulators: sentinels of Bacillus subtilis post-exponential gene expression. Mol. Microbiol. 7, 337–342.Google Scholar
  77. Strauch, M. A., G. B. Spiegelman, M. Perego, W. C. Johnson, D. Burbulys and J. A. Hoch (1989a). The transition state transcription regulator abrB of Bacillus subtilis is a DNA binding protein. EMBO J. 8, 1615–1621.Google Scholar
  78. Strauch, M. A., M. Perego, D. Burbulys and J. A. Hoch (1989b). The transition state transcription regulator AbrB of Bacillus subtilis is autoregulated during vegetative growth. Mol. Microbiol. 3, 1203–1209.Google Scholar
  79. Strauch, M. A., K. A. Trach, J. Day and J. A. Hoch (1992). Spo0A activates and represses its own synthesis by binding at its dual promoters. Biochimie 74, 619–626.CrossRefGoogle Scholar
  80. Thieffry, D. and R. Thomas (1995). Dynamical behaviour of biological networks: II. Immunity control in bacteriophage lambda. Bull. Math. Biol. 57, 277–297.CrossRefzbMATHGoogle Scholar
  81. Thomas, R. and R. d’Ari (1990). Biological Feedback, Boc Raton, FL: CRC Press.zbMATHGoogle Scholar
  82. Trach, K. et al. (1991). Control of the initiation of sporulation in Bacillus subtilis by a phosphorelay. Res. Microbiol. 142, 815–823.CrossRefGoogle Scholar
  83. Trach, K. A. and J. A. Hoch (1993). Multisensory activation of the phosphorelay initiating sporulation in Bacillus subtilis: identification and sequence of the protein kinase of the alternate pathway. Mol. Microbiol. 8, 69–79.Google Scholar
  84. Vaughn, J. L., V. Feher, S. Naylor, M. A. Strauch and J. Cavanagh (2000). Novel DNA binding domain and genetic regulation model of Bacillus subtilis transition state regulator abrB. Nat. Struct. Biol. 7, 1139–1146.CrossRefGoogle Scholar
  85. Wang, L., R. Grau, M. Perego and J. A. Hoch (1997). A novel histidine kinase inhibitor regulating development in Bacillus subtilis. Genes Dev. 11, 2569–2579.Google Scholar
  86. Weir, J., E. Dubnau, N. Ramakrishna and I. Smith (1984). Bacillus subtilis spo0H gene. J. Bacteriol. 157, 405–412.Google Scholar
  87. Weir, J., M. Predich, E. Dubnau, G. Nair and I. Smith (1991). Regulation of spo0H, a gene coding for the Bacillus subtilis σ H factor. J. Bacteriol. 173, 521–529.Google Scholar
  88. Wu, J.-J., M. G. Howard and P. J. Piggot (1989). Regulation of transcription of the Bacillus subtilis spoIIA locus. J. Bacteriol. 171, 692–698.Google Scholar
  89. Wu, J.-J., P. J. Piggot, K. M. Tatti and C. P. Moran Jr (1991). Transcription of the Bacillus subtilis spoIIA locus. Gene 101, 113–116.CrossRefGoogle Scholar
  90. Yagil, G. and E. Yagil (1971). On the relation between effector concentration and the rate of induced enzyme synthesis. Biophys. J. 11, 11–27.CrossRefGoogle Scholar
  91. Yamashita, S., F. Kawamura, H. Yoshikawa, H. Takahashi, Y. Kobayashi and H. Saito (1989). Dissection of the expression signals of the spo0A gene of the Bacillus subtilis: glucose represses sporulation-specific expression. J. Gen. Microbiol. 135, 1335–1345.Google Scholar

Copyright information

© Society for Mathematical Biology 2004

Authors and Affiliations

  • Hidde de Jong
    • 1
    Email author
  • Johannes Geiselmann
    • 2
  • Grégory Batt
    • 1
  • Céline Hernandez
    • 3
  • Michel Page
    • 1
    • 4
  1. 1.Institut National de Recherche en Informatique et en Automatique (INRIA)Unité de recherche Rhône-AlpesSaint Ismier CedexFrance
  2. 2.Laboratoire Adaptation et Pathogénie des Microorganismes (CNRS UMR 5163)Université Joseph FourierGrenoble Cedex 9France
  3. 3.Swiss Institute of Bioinformatics (SIB)Geneva 4Switzerland
  4. 4.Ecole Supérieure des AffairesUniversité Pierre Mendès FranceGrenobleFrance

Personalised recommendations