Journal of Bionic Engineering

, Volume 10, Issue 4, pp 469–478 | Cite as

Transfer of Natural Micro Structures to Bionic Lightweight Design Proposals

  • M. Maier
  • D. Siegel
  • K. -D. Thoben
  • N. Niebuhr
  • C. Hamm


The abstraction of complex biological lightweight structure features into a producible technical component is a fundamental step within the transfer of design principles from nature to technical lightweight solutions. A major obstacle for the transfer of natural lightweight structures to technical solutions is their peculiar geometry. Since natural lightweight structures possess irregularities and often have extremely complex forms due to elaborate growth processes, it is usually necessary to simplify their design principles. This step of simplification/abstraction has been used in different biomimetic methods, but so far, it has an arbitrary component, i.e. it crucially depends on the competence of the person who executes the abstraction. This paper describes a new method for abstraction and specialization of natural micro structures for technical lightweight components. The new method generates stable lightweight design principles by using topology optimization within a design space of preselected biological archetypes such as diatoms or radiolarian. The resulting solutions are adapted to the technical load cases and production processes, can be created in a large variety, and may be further optimized e.g. by using parametric optimization.


biomimetic finite elements design space design principle topology optimization parametric optimization diatoms radiolarian 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Darwin C. The Origin of Species, Mundus Publishing, 1928.Google Scholar
  2. [2]
    Nachtigall W. Bionik — Design für funktionelles Gestalten, Springer Verlag, Heidelberg, Germany, 1997. (in German)Google Scholar
  3. [3]
    Liu K, Jiang L. Bio-inspired design of multiscale structures for function integration. Nano Today, 2011, 6, 155–175.CrossRefGoogle Scholar
  4. [4]
    Milwich M, Speck T, Speck O, T. Stegmaier, Planck H. Biomimetics and technical textiles: Solving engineering problems with the help of nature’s wisdom. American Journal of Botany, 2006, 93, 1455–1465.CrossRefGoogle Scholar
  5. [5]
    Ma J F, Chen W Y, Zhao L, Zhao D H. Elastic buckling of bionic cylindrical shells based on bamboo. Journal of Bionic Engineering, 2008, 5, 231–238.CrossRefGoogle Scholar
  6. [6]
    Jiao H, Zhang Y, Chen W. The lightweight design of low RCS pylon based on structural bionics. Journal of Bionic Engineering, 2010, 7, 182–190.CrossRefGoogle Scholar
  7. [7]
    Zhao L, Ma J, Wang T, Xing D. Lightweight design of mechanical structures based on structural bionic methodology. Journal of Bionic Engineering, 2010, 7, 224–231.CrossRefGoogle Scholar
  8. [8]
    Xing D H, Chen W, Zhao L, Ma J F. Structural bionic design for high-speed machine tool working table based on distribution rules of leaf veins. Science China Technological Sciences, 2012, 55, 2091–2098.CrossRefGoogle Scholar
  9. [9]
    Zhao L, Ma J, Chen W, Guo H. Lightweight design and verification of grantry machining center crossbeam based on structural bionics. Journal of Bionic Engineering, 2011, 8, 201–206.CrossRefGoogle Scholar
  10. [10]
    Hamm C, Merkel R, Springer O, Jurkojc P, Maier C, Prechtel K, Smetacek V. Architecture and material properties of diatom shells provide effective mechanical protection. Nature, 2003, 421, 841–843.CrossRefGoogle Scholar
  11. [11]
    Sumper M, Brunner E. Learning from diatoms: Nature’s tools for the production of nanostructured silica. Advanced Functional Materials, 2006, 16, 17–26.CrossRefGoogle Scholar
  12. [12]
    Hamm C. Kieselalgen als Muster für technische Konstruktionen. BIOSpektrum, 2005, 1, 41–43. (in German)Google Scholar
  13. [13]
    Hamm C. Evolutionary Light Structure Engineering: Ein Verfahren zur Verbesserung des Strukturleichtbaus, Technical report, Alfred-Wegener-Institut für Polar-und Meeresforschung, 2008. (in German)Google Scholar
  14. [14]
    Round R E, Crawford R M, Mann D G. The Diatoms, Press Syndicate of the University of Cambridge, Cambridge, 1990.Google Scholar
  15. [15]
    Smetacek V. A watery arms race. Nature, 2001, 411, 745–745.CrossRefGoogle Scholar
  16. [16]
    Hamm C, Smetacek V. Armor: Why, when and how? In: Falkowski P G, Knoll A H (eds.), Evolution of Primary Producers in the Sea, Elsevier, Amsterdam, 2007, 311–332.CrossRefGoogle Scholar
  17. [17]
    Maier M, Schulz J, Thoben K D. Verfahren zur funktionalen Ähnlichkeitssuche technischer Bauteile in 3D-Datenbanken. Datenbank-Spektrum, 2012, 12, 131–140. (in German)CrossRefGoogle Scholar
  18. [18]
    Niebuhr N. Konstruktion von Offshore — Gründungsstrukturen nach Biologischem Leichtbauverfahren. Master’s thesis, University of technology, business and design — Hochschule Wismar, 2010. (in German)Google Scholar
  19. [19]
    Friedrichs L, Maier M, Hamm C. A new method for exact three-dimensional reconstructions of diatom frustules. Journal of Microscopy, 2012, 248, 208–217.CrossRefGoogle Scholar
  20. [20]
    Nahrendorf M, Badea C, Hedlund L W, Figueiredo J L, Sosnovik D E, Johnson G A, Weissleder R. High-resolution imaging of murine myocardial infarction with delayed-enhancement cine micro-CT. American Journal of Physiology: Heart and Circulatory Physiology, 2007, 292, H3172–H3178.Google Scholar
  21. [21]
    Marinello F, Bariani P, Savio E, Horsewell A, De Chiffre L. Critical factors in SEM 3D stereo microscopy. Measurement Science and Technology, 2008, 19, 065705.CrossRefGoogle Scholar
  22. [22]
    Losic D, Pillar R, Dilger T, Mitchell J, Voelcker N. Atomic force microscopy (AFM) characterisation of the porous silica nanostructure of two centric diatoms. Journal of Porous Materials, 2007, 14, 61–69.CrossRefGoogle Scholar
  23. [23]
    Yonath A. X-ray crystallography at the heart of life science. Current Opinion in Structural Biology, 2011, 21, 622–626.CrossRefGoogle Scholar
  24. [24]
    Pierson J, Sani M, Tomova C, Godsave S, Peters P. Toward visualization of nanomachines in their native cellular environment. Histochemistry and Cell Biology, 2009, 132, 253–262.CrossRefGoogle Scholar
  25. [25]
    Gipson D J, Mills P, Wouts R, Grininger M, Vonck J, Kühlbrandt W. Direct structural insight into the substrate-shuttling mechanism of yeast fatty acid synthase by electron cryomicroscopy. Proceedings of the National Academy of Sciences of USA, 2010, 107, 9164–9169.CrossRefGoogle Scholar
  26. [26]
    Bendsøe M P, Sigmund O. Topology Optimization - Theory, Methods and Applications, Springer-Verlag, New York, 2003.zbMATHGoogle Scholar
  27. [27]
    Bendsøe M P, Kikuchi N. Generating optimal topologies in optimal design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 1988, 71, 197–224.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    Lindby T, Santos J L T. Shape optimization of three-dimensional shell structures with the shape parameterization of a CAD system. Structural and Multidiscipli-nary Optimization, 1999, 18, 126–133.CrossRefGoogle Scholar
  29. [29]
    Van der Auweraer H, Van Langenhove T, Brughmans M, Bosmans I, Masri N, Donders S. Application of mesh morphing technology in the concept phase of vehicle development. International Journal of Vehicle Design, 2007, 43, 281–305.CrossRefGoogle Scholar

Copyright information

© Jilin University 2013

Authors and Affiliations

  • M. Maier
    • 1
  • D. Siegel
    • 2
  • K. -D. Thoben
    • 3
  • N. Niebuhr
    • 2
  • C. Hamm
    • 1
  1. 1.Alfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany
  2. 2.Institute for Marine Resources GmbHBremerhavenGermany
  3. 3.University of BremenBremenGermany

Personalised recommendations